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Abstract

In this work, we consider a Multiobjective Minimal Cost Flow (MMCF) problem where there are several commodities
to transport from sources to destinations and more than one conveyance for those transporting. We also assume that
each commodity has distinct capacities in each conveyance. The obtained model is not necessatily balanced, and we
introduced a method to solve this model without converting it to a balanced model. The advantages of the proposed

method are also discussed.

Keywords: Fuzzy multiobjective solid minimal cost flow problem, LR flat fuzzy number, Multicommodity minimal cost flow
problem.

1| Introduction

Minimum Cost Flow (MCF) problems have many applications in almost all industries, such as agriculture,
communications, education, energy, manufacturing, medicine, and transportation [1]. Generally, the MCF
problem minimizes the cost of transporting products that are available at some sources and required at some
destinations. However, there are few MCF problems with only a single objective in the real world. Therefore,
in recent years, many authors have considered multiple objective minimum cost flow problems [2]. Another
complexity in the real issues is the impreciseness of values of coefficients of the variables in the objective
functions, availability, and demand of the products. The fuzzy set theory introduced by Zadeh [3] is a good
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alternative for this impreciseness. To our knowledge, Zimmermann [4] proposed the first formulation of
fuzzy multiobjective linear programming. Also, for the first time, Shih and Lee [5] considered a fuzzy MCF
problem. After that, this problem has been studied by many researchers from several viewpoints; see [6]—[8]
and the references therein.

Our motivation for this paper is the recent works of Kaur and Kumar[8], [9]. In [9], the authors consider
fuzzy multiobjective transportation problems where there exist some nodes, called intermediate nodes, at
which the product may be stored in case of the excess of the available product, and later on, the product may
be supplied from these intermediate nodes to the destinations. They assumed that there are different types of
conveyances, such as trucks, cargo flights, trains, ships, etc., for transporting the products from sources to
destinations. Such multiobjective transportation problems in which the conveyances and intermediate nodes
are used simultaneously are known as multiobjective Solid Minimal Cost Flow (SMCF) problems [9]. The
SMCEF problem with fuzzy data was studied by several authors [9]—[13]. Sometimes, we must transport more
than one commodity from sources to destinations. These problems are called multicommodity flow problems.
Ghatee and Hashemi [14] studied fuzzy multicommodity flow problem, and Chakraborty et al. [15], Dalman
et al. [16], Kundu et al. [17], and Rani et al. [18] considered multiobjective multi-item solid transportation
problem under uncertainty. This paper considers a Fuzzy Multiobjective Multicommodity Minimal Cost Flow
(FMMMCEF) problem when conveyance limitations exist. In our model, a conveyance may be allowed to
transport a certain amount of a commodity. To our knowledge, this model has no research, even for
deterministic data.

This paper is organized into 6 sections. In the next section, some preliminaries of fuzzy numbers are reviewed.
In Section 3, we describe our model, and a formulation of the FMMMCEF problem is introduced. In Section
4, the new method is proposed, and we illustrate this method with some numerical examples in Section 5.

The conclusion and some suggestions are given in Section 6.
2| Preliminaries
In this section, we provide some preliminaries.

Definition 1 ([19]). A function L: [0,0) — [0,1] (or R: [0, 0) — [0,1]) is said to be a reference function of

fuzzy numbers if and only if
I. L(0) =1 (orR(0) = 1).
II. L (R) is non-increasing on [0, o).

Definition 2 ([20]). A fuzzy number & = (m,n, o, B)1r is said to be an LR flat fuzzy number if its

membership function p;(x) is given by

L(m;X), forx <m,a>0

= X—n
Ha = R( B ) forx=n,f>0

1, otherwise
Definition 3 ([20]). Two LR flat fuzzy numbers d; = (my,ny, oy, B1) g and d; = (my, ny, ay, B,) R ate said
to be equal, i.e., 8; = d, if and only if my = my, n; = n,, oy = ay, and B; = B,.
Definition 4 ([21]). An LR flat fuzzy number & = (m, n, o, ) is said to be a non-negative LR flat fuzzy
number if and only if m — a > 0.

Letd; = (my,ny, ay, By)rr @and d, = (my, ny, ay, B2)Lr be two LR flat fuzzy numbers. Then

I. 51@52 = (m1+m2,1’11 +n2,0(1+0(2,[31 +BZ)LR'
Il. Letd; and &, be non-negative LR flat fuzzy numbers. Then
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a; ®a, = (mymy,n; ny, (Mg — oy)(mM, — az) — my my, (g +B;)(ny + B2) — Ny Ny)gp.

IIl.  LetA be a real number. Then

A, = {(?\ mq,Ang, Aag,AB)LR A= 0,
(Any,Amy,—ABy, —Aa)r A<O.
2, = {0\ my, Ang, Aoy, ABy)LR A= 0,
(Any,Amy,—ABy,—Aa)g A<O.

In this papet, we use modified Liou and Wang's [22] ranking for the compatison of fuzzy numbers.

Assume, 3 = (m,n, o, B)r.

R(@ =y| [y Mt + n(1 - D)X |+ A= V[Af, (m = al(p))dp+(1— 1) f(n+
BR™(p))dp |
where y € [0,1] and A € [0,1].

Letd and b be two LR flat fuzzy numbers. Then @ S b (3 Z b) if (@) = R(b) (%@ < R(b)).
3| Fully Fuzzy Multicommodity Multiobjective Model

In this section, we introduce a fully fuzzy multicommodity multiobjective model for solid minimal cost flow
problems in which there are limitations on conveyances for the transport of the products. For example,
assume we want to transport coal and petroleum by train from one city to another. We need a special tank
for each commodity (coal and petroleum). Therefore, we cannot allocate all the train's capacity to a
commodity. For another example, assume that we want to send grease and petroleum from one country to
another country by ship. Assume that some rules for importing grease or petroleum by ship in the destination
country do not allow you to send more than a particular value of these materials. Therefore, you cannot
allocate all the ship's capacity to a commodity. These examples show we must design a new model to cover
these problems.

Assume that G = (N, A) is a given network where N is the set of nodes and A is the set of links. We describe
our problem with a simple example. Consider a network with two nodes, shown in Fig. 7. We want to send
two commodity t; and t, from node 1 to node 2. There exist three conveyances between these two nodes,
and each conveyance has a total capacity e and furthermore, each conveyance has a capacity for each
commodity as e, and e,. Note that we cannot send commodities more of the total capacity e, while we can

have e, +e, >e.

Fig. 1. Network representing FMMMCEF.

Similar to [8], [9] we categorize the nodes as follows.

Putrely source node: those nodes S in which there exists some node S’ such that the product may be supplied from S to
S" while there does not exist any node S” to transport product from S” to S. The set of all such nodes is
denoted by Nps.
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Purely destination node: those nodes D in which there does not exist any node D’ such that the product may

be supplied from D to D’ while there exists some node D" to transpotrt product from D" to D. The set of all
such nodes is denoted by Npp.

Intermediate node: the intermediate nodes are another part of a network. In the following, we sort the types
of these nodes.

L

II.

II1.

Those nodes S have some quantity of the product for supplying to other nodes, and also, thete exist some
nodes such that some amount of the product is transported from those nodes to node S. Such nodes are
called source nodes, and the set of all such nodes is dented by Ng.

Those nodes D which require some quantity of the product, and also there exist some nodes such that the
product is supplied from node D to those nodes. Such nodes are called destination nodes, and the set of all
such nodes is dented by Np.

Those nodes T which neither any quantity of the product is available at them to transship, nor any quantity
of the products is required, and all quantity of the product transferred from some nodes to node T is supplied

from T to some other nodes. Such nodes are called transition nodes, and the set of all such nodes is dented

by NT'

In the following, we list notations we use to represent our model.

L
II.
II1.

IV.

VL

VIL

VIII.

X

4} : the fuzzy availability of the product t at ith purely source node.

a}": the fuzzy availability of the product t at ith source node.

B]t the fuzzy demand of the product t at jth purely destination node.

B]-t': the fuzzy demand of the product t at jth destination node.

&: the fuzzy capacity of the kth conveyance for transfer of the product t.
&y the total fuzzy capacity of the kth conveyance.

Eit]-lk: the fuzzy penalty per unit of flow t from ith (purely) source to jth (purely) destination by means of the

kth conveyance in the lth objective function.

f(it]-k: the fuzzy quantity of the product t that should be transported from ith node to jth node by means of

the kth conveyance to minimize all objective functions.

Sc: the set of all available conveyances.

We assume that at, at’ ,Bjt, Bl-t', &L, &y are non-negative LR flat fuzzy numbers. We also assume that there are
L objective functions and T commodities. With these notations, a FMMMCEF problem can be formulated into
the following fuzzy multiobjective linear programming problem:

T
Minimum > )" Y @ @5 1=1,...L, (1)

t=1 (i,j)e Ake S¢

Subject to

~t = =~ .
2ji(i)e A Lke S¢ Xijk = i, i€ Nps,t=1,..,T,

st = St xt! —
Yji(ij)e A Lke S¢ Xijk = Xj:Gi)e A2kesc Xjik D dj, 1€ Ng,t=1,..,T,

Yii(ij)e A Dke ¢ Xk = Bjt' j € Npp,t=1,..,T,

Zi:(i'j)EAZkE Sc )N(itik = Zi:(j,i)EAZkE Sc gjtik ® B;c’, j€ Np,t=1,..,T,
Zj:(i,j)eAZke Sc )N(it]'k = Z]':(]',i)EAZkE Sc )N(jtik. i€ Np,t=1,...,T,
Y1 XjGieain < &, KE Sg,
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.28k, keScGpeAt=1..,T

where & is 2 non-negative LR flat fuzzy number for all (i,j) € A and k € S.

1

4| Proposed Method

Almost in all available algorithms for MCF problems, we must examine whether the problem is balanced or
unbalanced and convert an unbalanced one to a balanced one with some modifications. This process may be
expensive, so solving our model without this assumption is better. In our model, there are some equalities
and inequalities; therefore, with a generalization of the proposed algorithm in Subsection 5.4.2 of [23] and
using existing methods [24] to solve multiobjective linear programming, we can obtain the optimal

compromise solution for our model. We recall the definition of a fuzzy efficient solution from the literature.

Definition 5. A fuzzy, feasible solution X = {&;} is said to be a fuzzy efficient solution of the fully fuzzy

multiobjective SMMMCEF problem if there is no other fuzzy feasible solution &' = {&jj,} such that

T T
Z Z z SR(Cl]k X il]k) < Z Z Z 9%(Cuk b2 Xl]k)
t=1 (i,j)e Ake S¢c t=1 (ij)e Ake S¢
foralll € {1, ...,L}, and
T T
Z 9%(Cl]k 1]k) < Z Z Z SR(Cl]k ® Xl]k)
t=1 (i,j)e Ake S¢ t=1 (ij)e Ake S¢

for at least one 1 € {1, ..., L}.

Note that, for real-world problems, we do not need to obtain the set of all fuzzy efficient solutions. It is
sufficient to compute a fuzzy optimal compromise solution. A fuzzy optimal compromise solution of the
FMMMCEF problem is a feasible solution that the decision maker prefers to all other solutions. We accept
that a fuzzy optimal compromise solution must be a fuzzy efficient solution.

tr

L
I

gt = (vt gt vt &t st _ ottt oot
Step 1. Assume that Cl]k (puk: ql]k' 1]k' Bl]k LR» Xjjk = (Yijk» Zijk Yijk 6ijk)LR' a = (i, si, &, G)Lrs
tr ot Lt tr tr = st
(ri »Sia & )LR' j - (Vj,Wj,T]j, j)LR' b - (V] ,W] »T]] ,9 )LR) €k = (gk! hk' }\k' uk)LR! and €k =

(gl hio Al ti)Lr -Therefore, Problem (1) can be written as

Minimum Z Z Z (pl]k'ql]k' ijk’ Bl]k)LR® (yUk' 1]k'Y1]k' 1]k)LR =1,. (2)
t=1 (i,j)e Ake S¢

Subject to
t t t t = t -t t 7t : —
2ji(ij)e A 2ke SC(YiijZijk'Yijk'Sijk)LR = (ri'si'si 'Zi)LR' 1€ Nps,t=1,.
t t t t ~
Z]:(I,j)e AXke SC(Yijk' Zijkr Yijks Sijk)LR Z; (e AXke SC(YJlk' jike y]lk' ]lk)LR EB
th ottt i€ Net=1 T
IiSis& »6 Jur 1 s;<t=1,..,7T,

t t t t g t t .t ot : —
E (Vi Ziio Yigo S )R = (v, Wiim5,65), j€ Npp,t=1,..,T,
i:(i,j)e Ake S¢
t t t t g t t t t
§ (Yijk'zijk'Yijk'(Sijk)LR = E (inklzjik:inkISjik)LR

i:(Lj)e Ake Sc i:(j,i)e AKE S¢
t ottt .
@ V] )Wj )n] )9] LR, ]E ND,t= 1, ,T

t t t t _ t t t t :
z (Yijk' Zijkr Yijks 6ijk)LR = z Z (ink' Zjik» Yjik’ Sjik)LR' 1€ Np,t

j:(i,j)e Ake S¢ j:(,i)e Ake Sc
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Z (Viik Zijio Yijio Shik ) LR < (810 hio Mo idLr, K € Sg,
t=1j:(ipea

(Vi Zjto Yijio St LR < (8l hio Mo i), K€ S, (b)) € At=1,..,T.

where (Yitjk' Zit]-k, Y'icjk' Sitjk)LR is a non-negative LR flat fuzzy number forall k € S, (i,j) € A,t=1,..,T.

Step 2. Assume that

tl tl tl tl t t t t _ tl tl tl tl
(pijk' dijkr Kijks Bijk)LR 02¢ (Yiij Zijk Yijk’ Sijk)LR = (Oijkr Ujjkr Pijko Tijk)LRv
t t t t tr tr b tr _ t t t t
(ink' Zjik» Yjik’ 8jik)LR @ (ri 'SioE LG )LR = (mjik' Djik, Tk Gjik)LR'
and

t t t t tr tr Lt otr _ tr tr tr tr
(ink' Zjik Yjik’ (Sjik)LR @D (V' Wiy, 6 )LR = (mjikf jiko Tiks Ojik )| p-

With these notations, Problem (2) can be written as

T
. R B _
Minimum Z z Z (oi]-k,ui]-k,cpi]-k,ri]-k)LR, 1=1,..,L
t=1 (i,j)e Ake S¢c
Subject to
t t t t = t -t t 7t : —

Z (Vo Zijko Vi S )ir < (rfshef,¢)r, 1€ Npg,t=1,..,T,

j:(i,j)e Ake S¢
t t t t = t t t t : —

iiie A ke se (Vi Zijio Vil 8L < (Mo it Tige Gjik)LR' i€ Ng,t=1,..,T,

t t t t g t t .t gt : —
E (yijk’ZiijyiijSijk)LR = (V]-,W,-,n,-,ej), j€ Npp,t=1,..,T,
i:(i,j)e Ake S¢

t t t t g tr tr tr tr . _
Z (Yijk' Zijk Yijkr Sijk)LR = Z z (mjik' jik Wik Gjik)LR' j€ Np,t=1,..,T,

i:(ij)€ AKE S¢ i:(j)e AKE S¢
t t t t _ t t t t
Z (Yijk' Zijkr Yijks Sijk)LR = Z Z (ink' Zjik» Yjik’ Sjik)LR:
j:(i,j)e Ake S¢ j:(,i)e Ake Sc

ie Npt=1,..,T,
T

(i Zijlo Vil Stk )LR < (81 hio Ao LR, K € S,
t=1j:(pea

(Vi Zito Yijio St LR < (8l hio Mo i), K€ S, (b)) € At=1,..,T.

Q)

where (yitjk, Zitjk, yitjk, Sitjk)LR is a non-negative LR flat fuzzy number for all k€ S¢,(i,j) € A t=1,..,T.

Step 3. Using rank function R, we solve the following problem:

T
o ottt
Minimum SR Z Z Z (Oijk' ui]'k, (pi]'k, Tijk)LR = 1, ...,L,
t=1 (i,j)e Ake S¢
Subject to
t .t ot ot t ot toot - —
R(jia0e a Lke sc Vi Zijio Vi Sij)Lr) < R(rf s el , &)ir, 1€ Npg,t=1,..,7T,

t t t t t t t t : —
ER(Zj:(i,j)eAZke sc(Yijk» Zijk» Yijkr (Sijk)LR) < ER(mjik: Djik, Tk Gjik)LR' i€ Ng,t=1,..,T,

R Z Z (Vijio Zijio Yijio Sij LR | = m(V]tW]tﬂ]t 6{), j€ Npp,t=1,...,T,
i:(i,j)e Ake S¢

4)
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t ot ot t ot _t
R Z Z(Yijklzijk;Yijk;Sijk)LR =R Z z (mjik'njik'njik'

i:(,j)e AKE S¢

] € ND,t = 1
t
yUk - YJlk ’
j:(i,j)e Ake S¢ j:(.)e Ake Sc
j:(ij)e Ake S¢ j:G,i)e Ake S¢

D, D Y= ), ) Ve

j:(i,j)e Ake S¢ j:()e Ake S¢

DI

j:(,)e Ake S¢

81]1(
j:(i,j)e Ake S¢
T

t t t t
R Z Z (YiijZiijYiijSijk)LR
t=1j:(i))eA

‘R(yit]-k, Ziiko Vijko Sitjk)LR < R(gk hio Mo m)ir, K€ Sc, (L)) € At=1,..
T.

t t t t t t
Vijk — Yijk Zijk — Yijk Yijk Sijk = 0,

i:G,De AKE S¢

i€ N,

i€ Ng,

i€ N,

i€ Nr,

< R(gr hx, A )R K € Sc,

ke S¢,(3,j) € At=1,..,

!

jik

Step 4. Concerning the linear property of the rank Function (4) can be written as:

Minimum
t=1 (i,j)e Ake S¢c
Subject to

t t t t t .t ot 7t : —
Yi:(ij)e A 2ke S¢ ER(}’ijk' Zijio Yijko Sijk)LR < R(rf,sl €, {)ir 1€ Nps,t=1,..,T

t t t t t t t t : —
z:1':(i,i)eAZke Sc ‘R(Yijk' Zijk Yijkr (Sijk)LR < m(mjik' Njiie Wik Gjik)LR' i€ Ng,t=1,..,

Z 9{(YUk' ijk YI]k’ 1]k)LR
i:(i,j)e Ake S¢

Z m(Yl]k' 1]k'Y1]k' 1]k)LR

i:(ij)€ A KE S¢

jENp,t=1,..,T,
t _ t
Yijk = Yijik »
j:(i,j)e Ake S¢ j:(,i)e Ake S¢
t _ t
Zjjk = Zjik »
j:(i,j)e Ake S¢ j:(,)e Ake S¢
t t
Yijk = Yjik »

j:(ij)e Ake S¢ j:Gii)e Ake S¢

INDILSIDIPIL =

j:(i,j)e Ake S¢ j:(,i)e Ake S¢
T

tl
Z GR(Ol]kJ ijk’ q)l]k’ ijk)LR 1=1,..,L

ER(V],W n], t)

>, 2%

i:(j,)e Ake S¢

j € Npp,

t' t
My, Nyjiko ik

i€ Np,
i€ Np,
i€ Np,

i€ N,

Z R (Vi Zijo Vije Siii)Lr < R(8lo hio Ao )Lr, K€ S,

t=1j:G,DeA

R(¥iiko Zito Vi Ok )LR < R(8lo o Mo Mi)Lr, K € Sc, (1)) € At =

!

jik

t=1,.

1,..

o)
LR

otik)
LR

lTl

LT,

©)

T,
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ik = Vi Zik — Vi Vige 8k = 0, K€ Sc,(i,j) € At=1,..,T.

Step 5. With solving the crisp programming Problem (5), find the optimal compromise solution xij =
(yit;(' Zijo Yiko 85;() LR

Step 6. Find the fuzzy optimal value of each objective function by putting the values of

tx __ t t t t . T ~tl ~t
Xk = (Vo Zio Vi O5i)LR 10 Xi=1 Xije a 2ke s Clik @ Kii) -

5| Illustrative Example

In this section, we illustrate our method with an example.

—
=

Fig. 2. Network representing Example 1.

Example 1. Consider the network Fig. 2 with the following data. Fuzzy penalty for 1st objective function to
transport commodity 1st

cisn=0GB422w,  cin= (2312

i1 = 4533k 312 = (5,633

331 = (57,4, 3)Lr, 232 = (3,4,2,3)1r-

Fuzzy penalty for 2nd objective function to transport commodity 1st
it = (46,33 5 =642k

Gt = (56,43 iz = (67,4 Dk

35 = (684N, 3% = (4,523

Fuzzy penalty for 1st objective function to transport commodity 2nd
ot = (2,31, Dir, iz = (24,1 Dr

it = (4530w 12 = (23,2, Dk

351 = (4,6,3,3)Lr, ¢332 = (2,3,1,2) k-

Fuzzy penalty for 2nd objective function to transport commodity 2nd
cth = (3,42, Dir, ctf = (3,4,2,2)1r-

3t = (5743w 12 = (56,33
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551 = (5,6,4,3)1r 55, = (2,3, 1, 1)1p.

Fuzzy availability of the commodity 1st at source node 1 and purely source node 2
al’ = (30,40,20,10);x, a3 = (30,40,20,20)R.

Fuzzy availability of the commodity 2nd at source node 1 and purely source node 2
a?’ = (40,60,20,30).g, a3 = (40,50,30,30) .

Fuzzy demand of the commodity 1st at purely destination node 3

bl = (30,50,20,30) .

Fuzzy demand of the commodity 2nd at purely destination node 3

b2 = (40,50,30,30) .

Fuzzy capacity of the 1st conveyance for transfer of the commodities 1st and 2nd

el = (60,70,40,30).r, €2 = (60,70,30,30) .

Fuzzy capacity of the 2nd conveyance for transfer of the commodities 1st and 2nd

el = (60,70,30,30);r, €2 = (60,70,20,20).x.

The total fuzzy capacity of the 1st and 2nd conveyances
e; = (70,70,30,30)R, e, = (70,80, 20, 20)r.

We assume that L(x) = R(x) = max {0,1 — x*}. Therefore, for a fuzzy number a = (m,n, o, B), R(A) =
~(m +n) + (B — «) (see Remark 1 in [9]).

The model will be as follows:

Minimum (3,4,2,2)g ® xi3; D (2,3,1,2) g @ xi3, B (4,5,3,3)1r ® x31;

@ (5' 6' 3' 3)LR ® X%IZ 69 (5' 7» 4' 3)LR ® X%?)l @ (3' 4!2! 3)LR ® X%32
6)
B (231D @ x33,D (24,1,2) g ® x33, D (4,5,3,2)1r ® x31,

D (2,3,2,2) g ® x%1, D (4,6,3,3) g ®x33; D (2,3,1,2)1r ® x335,
Minimum (4,6,3,3);r ® X131 D@ (3,4,2,2)r @ X{3, D (5,6,4,3)1r @ X311

D (6,744 Q xi12 D(6,844)r ® x33; D (4,52,3)r Q X33,

DB 421D Qx31D B422)r® X33, D (5,7,43)r @ X511, B
(56,3,3)lr ® X531, D (5,6,4,3)1r @ %331 D (2,3,1,1)1r ® X33,
Subject to

X311 @D X312 D X331 D x33, < (30,40,20,20) R,

X311 @ X512 @ X331 D x33, < (40,50,30,30) R,

X%31 S X%32 X%n @ X%12 @ (30,40,20,10) g,

xXf31 @ xf3; X511 D x31, D (40,60,20,30) g,

X131 @D Xizz @ X331 D X33z = (30,50,20,30) g,

X%31 @ X%32 @ X§31 @ X%32 = (40,50,30,30) g,

X311 D X331 D X131 D x511 @ x331 D xi31 < (70,70,30,30) g,

IAUIA
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x311 £(60,70,40,30) .,
X312 < (60,70,30,30) g,
x33; < (60,70,40,30) g,
X332 < (60,70,30,30),
x3,, <(60,70,30,30) g,
(60,70,20,20) g,
X33, <(60,70,30,30) g,
X331 < (60,70,20,20)p.

2
X212

And xjy (i =j = 1,2,3,k t = 1,2) is a non-negative LR flat fuzzy number. Concerning S#ps 3 and 4 in Section

4, the fuzzy optimal solution can be obtained by solving the following problem:

Minimum % (61y1i3; + 76 2131 +8Yiz, + 488131 +38yis; +612i5, +8vyis, +

40 813, + 84y, +99 2%11 +8y3 +6485; +99y3,, + 114 2%12 +16y3,, +

72 8%,, + 1O7y231 + 129 235, + 8y33, + 80833, + 61y232 + 84215, + 8yi3, +56 8232 + 0
38 Y131 +53 Z131 +8Y%3; + 32875, +38 Y132 +76 Z132 +8Y%3, + 48875, + 84 YZ11 +
9122, + 8Y3,; + 56 8%, + 46y35,, + 6122, + 0y3,, + 40 8%,, + 84y231 + 114 2231 +

8331 + 72 8331 + 38y3s, + 61253, + 8y33; + 40 833,),

1
Minimum %(84 y:1l31 + 114 Z:1L31 + 8 y%31 + 72 6%31 + 61 y:1L32 + 76 Z:1L32 + 8 y%32

+ 48813, + 107 yay + 114231, + 8y3yy + 7283, + 122y3,,
+137z3,, + 16yL,, + 88681, + 122yl,, + 152z, + 16 y33,
+96 815, + 76yi3, +99 233, + 16 v33, + 64 835, + 61 yZ5,
+ 68223 + 8231 + 408331 + 61 yfs, + 76 283, + 8yis, + 48 823,
+107y3,; +12922,, + 8vy3,; + 80 83,; +99y3,, + 114 z2,,
+ 1631, + 7282, + 107y35, + 114 225, + 833, + 72 8254
+ 38y33, + 53 253, + 8 Y53, + 32 833,),

Subject to

%(Y%n + Va2 + Y231 + Vi32 2311 + Za1z + 2331 + 7332)

+ E(S%n + 8312 + 8331 + 8332 — Y311 — Yz1z — Y231 — Yi32) < 35,

%(Y%n + Y312+ Y331 + Y332 + 2510 + 251 + 2331 + 2335)
+ 1_5(8%11 + 8312 + 8331 + 8332 — Y311 — Y312 — Y331 — Yi332) <45,

%(Y%m + Visz + Ziz1 + Ziz2) + 14_5(5%31 + 68132 = Yiz1 — Yisz)

= %(70 +ya11 + Yz + Z31 + Z312)

+ i(5%11 + 68312 = Y211 — Y312 — 10),
‘(Y131 + yis2 + 2f31 + 2733) + (5131 + 68832 — Yis1— Yis2) < %(100 +y5i+ Vi +

Z211 + 2315) + (5211 + 8512 — Y511 — Y312 + 10),

(Y131 + Yizz + Y231+ a3z + Ziz + Z132 + 231 + 2333) +— = (5 131 + 8135 + 8331 +

28
5232 - Y131 - Y132 - Y231 - Y232) = T’
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1
E(Y%m + Y%32 + Y%31 + Y%32 + 21%31 + Z%32 + Z§31 + 2%32)
4
+ E(S%m + 835 + 8531 + 8332 — Yi31 — Yis2 — Y331 — Y332) =45,
1
E(Y%n + Y%31 + Y%31 + Y%n + Y2231 + Y%31 + Z%11 + Z%31 + Z%31 + Z%11 + Z%31 + Z%31)

4
+ E(S%n + 8331 + 8131 + 8311 + 8531 + 8931 — Yi11 — Y231 — Vi
— Y511 — Y531 — Yiz1) < 70,

1 4 187
5()’%11 + Z%n) + E(S%n - Y%n) < N

1, 1 4 1

5(3’212 + z312) + 3(5212 — Y212) < 65,
1(}’%31 + 2331) + i(5%31 — V331) < E'
2 15 3
1 4

E(Y%az + 2335) + 1—5(5%32 — Y332) < 65,
1 4

5(3’%11 + 2514) + E(S%ll — Y311) < 65,
1 4

E(Y%u + 231) + 1_5(5%12 — Y312) < 65,
1 4

E(Y%m + 2331 + 1—5(5%31 — ¥331) < 65,

1, 2 4o 2
5(3’232 + z33;) + E(SZ?’Z — Y332) < 65,
Vi = Ve zhe = Vo Vie 8= 0, ke Sc(ij) € At=1.,T.

By solving this problem using the weighted sum method [24], we have

visn  0.0415 yi: 0.0103 yiin  0.0627
235 0.0198 23,  0.0103 23, 0.0979
Y%31 0 Y%32 0.6951 Y%n 0
851 0 853 0 851 0

viiz 01259 yis  0.0322 yi  0.0481
231, 0.1259  zds;  0.0322  zis,  0.2467

Y312 0 Y%31 0 Y%32 0
812 0 8131 0.1873 81, 0

Vi3 0.0208  y3, 0.0437 yiii  0.0474
235 0.1824 735, 0.0437 zZ,  0.087
Y531 0 Y332 0 Y31 0.0215
8%31 0 8%32 O 8%11 O

V32 -0.1491  yisn  -0.3316  yisz  -0.4967
23,  -0.1491 7% 03316 7,  -1.0268
Y32 0 Yis 03438 v, 0
81, 0 85 0 825 0

6| Conclusion

In this paper, we introduced a new model for fully fuzzy multiobjective multicommodity minimal cost flow
problems in which there are several commodities to transport from sources to destinations, and there is more
than one conveyance for this transporting. We also assume that each commodity has distinct capacities in
each conveyance. We proposed a method for solving this problem without considering a balanced version of
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that. Our method can also be considered a generalization of some methods for solving fuzzy multiobjective

methods in the presence of equalities and fuzzy inequalities.
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