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1|Introduction    

Minimum Cost Flow (MCF) problems have many applications in almost all industries, such as agriculture, 

communications, education, energy, manufacturing, medicine, and transportation [1]. Generally, the MCF 

problem minimizes the cost of transporting products that are available at some sources and required at some 

destinations. However, there are few MCF problems with only a single objective in the real world. Therefore, 

in recent years, many authors have considered multiple objective minimum cost flow problems [2]. Another 

complexity in the real issues is the impreciseness of values of coefficients of the variables in the objective 

functions, availability, and demand of the products. The fuzzy set theory introduced by Zadeh [3] is a good 
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  alternative for this impreciseness. To our knowledge, Zimmermann [4] proposed the first formulation of 

fuzzy multiobjective linear programming. Also, for the first time, Shih and Lee [5] considered a fuzzy MCF 

problem. After that, this problem has been studied by many researchers from several viewpoints; see [6]–[8] 

and the references therein. 

Our motivation for this paper is the recent works of Kaur and Kumar[8], [9]. In [9], the authors consider 

fuzzy multiobjective transportation problems where there  exist some nodes, called intermediate nodes, at 

which the product may be stored in case of the excess of the available product, and later on, the product may 

be supplied from these intermediate nodes to the destinations. They assumed that there are different types of 

conveyances, such as trucks, cargo flights, trains, ships, etc., for transporting the products from sources to 

destinations. Such multiobjective transportation problems in which the conveyances and intermediate nodes 

are used simultaneously are known as multiobjective Solid Minimal Cost Flow (SMCF) problems  [9]. The 

SMCF problem with fuzzy data was studied by several authors [9]–[13]. Sometimes, we must transport more 

than one commodity from sources to destinations. These problems are called multicommodity flow problems. 

Ghatee and Hashemi [14] studied fuzzy multicommodity flow problem, and Chakraborty et al. [15], Dalman 

et al. [16], Kundu et al. [17], and Rani et al. [18] considered multiobjective multi-item solid transportation 

problem under uncertainty. This paper considers a Fuzzy Multiobjective Multicommodity Minimal Cost Flow 

(FMMMCF) problem when conveyance limitations exist. In our model, a conveyance may be allowed to 

transport a certain amount of a commodity. To our knowledge, this model has no research, even for 

deterministic data. 

This paper is organized into 6 sections. In the next section, some preliminaries of fuzzy numbers are reviewed. 

In Section 3, we describe our model, and a formulation of the FMMMCF problem is introduced. In Section 

4, the new method is proposed, and we illustrate this method with some numerical examples in Section 5. 

The conclusion and some suggestions are given in Section 6. 

2|Preliminaries 

In this section, we provide some preliminaries. 

Definition 1 ([19]). A function L: [0,∞) →  [0,1] (or R: [0, ∞) →  [0,1]) is said to be a reference function of 

fuzzy numbers if and only if 

I. L(0) = 1 (or R(0) = 1).   

II. L (R) is non-increasing on [0,∞). 

Definition 2 ([20]). A fuzzy number ã = (m, n, α, β)LR   is said to be an LR flat fuzzy number if its 

membership function μ
ã
(x) is given by 

Definition 3 ([20]). Two LR flat fuzzy numbers ã1 = (m1, n1, α1, β1)LR and ã2 = (m2, n2, α2, β2)LR  are said 

to be equal, i.e., ã1 = ã2 if and only if m1 = m2, n1 = n2, α1 = α2, and β1 = β2. 

Definition 4 ([21]). An LR flat fuzzy number ã = (m, n, α, β)LR  is said to be a non-negative LR flat fuzzy 

number if and only if m −  α ≥  0. 

Let ã1 = (m1, n1, α1, β1)LR and ã2 = (m2, n2, α2, β2)LR be two LR flat fuzzy numbers. Then 

I. ã1⊕ ã2 = (m1 +m2, n1 + n2, α1 + α2, β1 + β2)LR.  
II.  Let ã1 and ã2 be non-negative  LR flat fuzzy numbers. Then   

 

μã =

{
 
 

 
 L(

m − x

α
) ,   for x ≤ m,α > 0

R(
x − n

β
) ,   for x ≥ n, β > 0

1,                                otherwise
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III.  Let λ be a real number. Then 

In this paper, we use  modified Liou and Wang's [22] ranking for the comparison of fuzzy numbers. 

Assume, ã = (m, n, α, β)LR . 

where γ ∈  [0,1] and λ ∈  [0,1]. 

Let ã and b̃ be two LR flat fuzzy numbers. Then ã ≥̃  b̃ (ã ≤̃ b̃) if ℜ(ã) ≥  ℜ(b̃) (ℜ(ã) ≤  ℜ(b̃)). 

3|Fully Fuzzy Multicommodity Multiobjective Model 

In this section, we introduce a fully fuzzy multicommodity multiobjective model for solid minimal cost flow 

problems in which there are limitations on conveyances for the transport of the products. For example, 

assume we want to transport coal and petroleum by train from one city to another. We need a special tank 

for each commodity (coal and petroleum). Therefore, we cannot allocate all the train's capacity to a 

commodity. For another example, assume that we want to send grease and petroleum from one country to 

another country by ship. Assume that some rules for importing grease or petroleum by ship in the destination 

country do not allow you to send more than a particular value of these materials. Therefore, you cannot 

allocate all the ship's capacity to a commodity. These examples show we must design a new model to cover 

these problems. 

Assume that G = (N, A) is a given network where N is the set of nodes and  A is the set of links. We describe 

our problem with a simple example. Consider a network with two nodes, shown in Fig. 1. We want to send 

two commodity t1 and t2 from node 1 to node 2. There exist three conveyances between these two nodes, 

and each conveyance has a total capacity e and furthermore, each conveyance has a capacity for each 

commodity as et1 and et2. Note that we cannot send commodities more of the total capacity e, while we can 

have et1 + et2 ≥ e. 

Fig. 1. Network representing FMMMCF. 

 

Similar to [8], [9] we categorize the nodes as follows. 

Purely source node: those nodes S in which there exists some node S′ such that the product may be supplied from S to 

S′ while there does not exist any node S′′ to transport product from S′′ to S. The set of all such nodes is 

denoted by NPS. 

ã1⊗ ã2 ≃  (m1 m2, n1 n2, (m1  −  α1)(m2  −  α2) − m1 m2, (n1 + β1)(n2 + β2) − n1 n2)LR.  

λã1 = {
(λ m1, λ n1, λ α1, λ β1)LR            λ ≥  0,
(λ n1, λ m1, −λ β1, −λ α1)LR     λ < 0.

  

λã1 = {
(λ m1, λ n1, λ α1, λ β1)LR            λ ≥  0,
(λ n1, λ m1, −λ β1, −λ α1)LR     λ < 0 .

  

ℜ(ã) = γ [ ∫ (mλ +  n(1 −  λ))dλ
1

0
 ] + (1 −  γ) [λ∫  (m −  α L−1(ρ))dρ + (1 −  λ) ∫ (n +

1

0

1

0

β R−1(ρ))dρ ],  
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  Purely destination node: those nodes D in which there does not exist any node D′ such that the product may 

be supplied from D to D′ while there exists some node D′′ to transport product from D′′ to D. The set of all 

such nodes is denoted by NPD. 

Intermediate node: the intermediate nodes are another part of a network. In the following, we sort the types 

of these nodes. 

I. Those nodes S  have some quantity of the product for supplying to other nodes, and also, there exist some 

nodes such that some amount of the product is transported from those nodes to node S. Such nodes are 

called source nodes, and the set of all such nodes is dented by NS. 

II. Those nodes D which require some quantity of the product, and also there exist some nodes such that the 

product is supplied from node D  to those nodes. Such nodes are called destination nodes, and the set of all 

such nodes is dented by ND. 

III. Those nodes T which neither any quantity of the product is available at them to transship, nor any quantity 

of the products is required, and all quantity of the product transferred from some nodes to node T is supplied 

from T to some other nodes. Such nodes are called transition nodes, and the set of all such nodes is dented 

by NT. 

In the following, we list notations we use to represent our model. 

I. ãi
t   : the fuzzy availability of the product   t at ith purely source node. 

II. ãi
t′: the fuzzy availability of the product t at ith source node. 

III. b̃j
t: the fuzzy demand of the product t at jth purely destination node. 

IV. b̃j
t′: the fuzzy demand of the product t at jth destination node.  

V. ẽk
t : the fuzzy capacity of the kth conveyance for transfer of the product t. 

VI. ẽk: the total fuzzy capacity of the kth conveyance. 

VII. c̃ijk
tl : the fuzzy penalty per unit of flow t from ith (purely) source to jth (purely) destination by means of the 

kth conveyance in the lth objective function. 

VIII. x̃ijk
t : the fuzzy quantity of the product t  that should be transported from ith node to jth node by means of 

the kth conveyance to minimize all objective functions. 

IX. SC: the set of all available conveyances. 

We assume that ãi
t, ãi

t′  ,b̃j
t, b̃j

t′, ẽk
t
, ẽk are non-negative LR flat fuzzy numbers. We also assume that there are 

L  objective functions and T commodities. With these notations, a FMMMCF problem can be formulated into 

the following fuzzy multiobjective linear programming problem: 

Minimum    ∑ ∑ ∑ (c̃ijk
tl ⊗ x̃ijk

t

k∈ SC(i,j)∈ A

T

t=1

)   l = 1,… , L, (1) 

Subject to  

 ∑ ∑ x̃ijk
t

k∈ SCj:(i,j)∈ A  ≤̃  ãi
t ,     i ∈  NPS, t = 1,… , T,   

 ∑ ∑ x̃ijk
t

k∈ SCj:(i,j)∈ A  ≤̃ ∑ ∑ x̃jik
t

k∈ SCj:(j,i)∈ A ⊕ ãi
t′,    i ∈  NS, t = 1,… , T,  

 ∑ ∑ x̃ijk
t

k∈ SCi:(i,j)∈ A  ≥̃  b̃j
t ,     j ∈  NPD, t = 1,… , T,  

 ∑ ∑ x̃ijk
t

k∈ SCi:(i,j)∈ A  ≥̃ ∑ ∑ x̃jik
t

k∈ SCi:(j,i)∈ A ⊕ b̃j
t′,    j ∈  ND, t = 1,… , T,  

 ∑ ∑ x̃ijk
t

k∈ SCj:(i,j)∈ A = ∑ ∑ x̃jik
t

k∈ SCj:(j,i)∈ A ,       i ∈  NT, t = 1,… , T,  

 ∑ ∑ x̃ijk
t

j:(i,j)∈ A
T
t=1 ≤̃ ẽk ,      k ∈  SC,  
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where x̃ijk
t  is a non-negative LR flat fuzzy number for all  (i, j) ∈  A and  k ∈ SC. 

4|Proposed Method 

Almost in all available algorithms for MCF problems, we must examine whether the problem is balanced or 

unbalanced and convert an unbalanced one to a balanced one with some modifications. This process may be 

expensive, so solving our model without this assumption is better. In our model, there are some equalities 

and inequalities; therefore, with a generalization of the proposed algorithm in Subsection 5.4.2 of [23] and 

using existing methods [24] to solve multiobjective linear programming, we can obtain the optimal 

compromise solution for our model. We recall the definition of a fuzzy efficient solution from the literature.  

Definition 5. A fuzzy, feasible solution x̃ = {x̃ijk
t } is said to be a fuzzy efficient solution of the fully fuzzy 

multiobjective SMMMCF problem if there is no other fuzzy feasible solution x̃′ = {x̃ijk
t′ } such that 

for all l ∈ {1, … , L}, and 

for at least one l ∈ {1, … , L}. 

Note that, for real-world problems, we do not need to obtain the set of all fuzzy efficient solutions. It is 

sufficient to compute a fuzzy optimal compromise solution. A fuzzy optimal compromise solution of the 

FMMMCF problem is a feasible solution that the decision maker prefers to all other solutions. We accept 

that a fuzzy optimal compromise solution must be a fuzzy efficient solution. 

Step 1. Assume that c̃ijk
tl = (pijk

tl , qijk
tl , αijk

tl , βijk
tl )LR, x̃ijk

t = (yijk
t , zijk

t , γijk
t , δijk

t )LR, ãi
t = (ri

t, si
t, εi

t , ζi
t)LR, ãi

t′ =

(ri
t′, si

t′, εi
t′ , ζi

t′)LR, b̃j
t = (vj

t, wj
t, ηj

t, θj
t)LR, b̃j

t′ = (vj
t′, wj

t′, ηj
t′, θj

t′)LR, ẽk = (gk, hk, λk, μk)LR, and ẽk
t =

(gk
t , hk

t , λk
t , μk

t )LR .Therefore, Problem (1) can be written as 

 x̃ijk
t ≤̃ ẽk

t  ,        k ∈  SC, (i, j) ∈  A, t = 1,… , T.  

∑ ∑ ∑ ℜ(c̃ijk
tl ⊗ x̃ijk

t′

k∈ SC(i,j)∈ A

T

t=1

) ≤∑ ∑ ∑ ℜ(c̃ijk
tl ⊗ x̃ijk

t

k∈ SC(i,j)∈ A

T

t=1

),  

∑ ∑ ∑ ℜ(c̃ijk
tl ⊗ x̃ijk

t′

k∈ SC(i,j)∈ A

T

t=1

) <∑ ∑ ∑ ℜ(c̃ijk
tl ⊗ x̃ijk

t

k∈ SC(i,j)∈ A

T

t=1

),  

Minimum  ∑ ∑ ∑ (pijk
tl , qijk

tl , αijk
tl , βijk

tl )LR⊗(yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SC(i,j)∈ A

T

t=1

 = 1,… , L, (2) 

Subject to  

 ∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LRk∈ SCj:(i,j)∈ A  ≤̃  (ri
t, si

t, εi
t , ζi

t)LR,   i ∈  NPS, t = 1,… , T,  

 ∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LRk∈ SCJ:(I,j)∈ A  ≤̃ ∑ ∑ (yjik
t , zjik

t , γjik
t , δjik

t )LRk∈ SCj:(j,i)∈ A ⊕

(ri
t′ , si

t′ , εi
t′  , ζi

t′) LR,     i ∈  NS, t = 1,… , T, 
 

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

 ≥̃  (vj
t, wj

t, ηj
t, θj

t),     j ∈  NPD, t = 1,… , T,  

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

 ≥̃ ∑ ∑ (yjik
t , zjik

t , γjik
t , δjik

t )LR
k∈ SCi:(j,i)∈ A

⊕(vj
t′ , wj

t′ , ηj
t′ , θj

t′) LR,     j ∈  ND, t = 1,… , T, 

 

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCj:(i,j)∈ A

= ∑ ∑ (yjik
t , zjik

t , γjik
t , δjik

t )LR,

k∈ SCj:(j,i)∈ A

  i ∈  NT, t      

= 1,… , T,  
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where (yijk
t , zijk

t , γijk
t , δijk

t )LR is a non-negative LR flat fuzzy number for all  k ∈  SC, (i, j) ∈  A, t = 1,… , T. 

Step 2. Assume that  

and 

With these notations, Problem (2) can be written as 

where (yijk
t , zijk

t , γijk
t , δijk

t )LR is a non-negative LR flat fuzzy number for all  k ∈  SC, (i, j) ∈  A, t = 1,… , T. 

Step 3. Using rank function ℜ, we solve the following problem: 

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
j:(i,j)∈ A

T

t=1

≤̃ (gk, hk, λk, μk)LR,     k ∈  SC,  

 (yijk
t , zijk

t , γijk
t , δijk

t )LR ≤̃ (gk
t , hk

t , λk
t , μk

t )LR,     k ∈  SC, (i, j) ∈  A, t = 1,… , T.  

(pijk
tl , qijk

tl , αijk
tl , βijk

tl )LR⊗ (yijk
t , zijk

t , γijk
t , δijk

t )LR = (oijk
tl , uijk

tl , φijk
tl , τijk

tl )LR,  

(yjik
t , zjik

t , γjik
t , δjik

t )LR⊕ (ri
t′, si

t′, εi
t′ , ζi

t′)LR = (mjik
t , njik

t , πjik
t , σjik

t )
LR
,  

(yjik
t , zjik

t , γjik
t , δjik

t )LR⊕ (vj
t′, wj

t′, ηj
t′, θj

t′)LR = (mjik
t′ , njik

t′ , πjik
t′ , σjik

t′ )
LR

.  

Minimum    ∑ ∑ ∑ (oijk
tl , uijk

tl , φijk
tl , τijk

tl )LR
k∈ SC(i,j)∈ A

T

t=1

,      l = 1,… , L, (3) 

Subject to  

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCj:(i,j)∈ A

 ≤̃  (ri
t, si

t, εi
t , ζi

t)LR,        i ∈  NPS, t = 1,… , T,   

 ∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LRk∈ SCj:(i,j)∈ A  ≤̃ (mjik
t , njik

t , πjik
t , σjik

t )
LR
 ,    i ∈  NS, t = 1,… , T,  

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

 ≥̃  (vj
t, wj

t, ηj
t, θj

t) ,      j ∈  NPD, t = 1,… , T,   

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

 ≥̃ ∑ ∑ (mjik
t′ , njik

t′ , πjik
t′ , σjik

t′ )
LR

k∈ SC

,

i:(j,i)∈ A

  j ∈  ND, t = 1,… , T,  

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCj:(i,j)∈ A

= ∑ ∑ (yjik
t , zjik

t , γjik
t , δjik

t )LR
k∈ SCj:(j,i)∈ A

,

i ∈  NT, t = 1,… , T, 

 

∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
j:(i,j)∈ A

T

t=1

≤̃ (gk, hk, λk, μk)LR,     k ∈  SC,  

 (yijk
t , zijk

t , γijk
t , δijk

t )LR ≤̃ (gk
t , hk

t , λk
t , μk

t )LR,     k ∈  SC, (i, j) ∈  A, t = 1,… , T.  

Minimum    ℜ(∑ ∑ ∑ (oijk
tl , uijk

tl , φijk
tl , τijk

tl )LR
k∈ SC(i,j)∈ A

T

t=1

)    l = 1,… , L, (4) 

Subject to  

 ℜ(∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LRk∈ SCj:(i,j)∈ A ) ≤  ℜ(ri
t, si

t, εi
t , ζi

t)LR,   i ∈  NPS, t = 1,… , T,  

 ℜ(∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LRk∈ SCj:(i,j)∈ A ) ≤ ℜ(mjik
t , njik

t , πjik
t , σjik

t )
LR
,   i ∈  NS, t = 1,… , T,  

ℜ( ∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

) ≥  ℜ(vj
t, wj

t, ηj
t, θj

t),   j ∈  NPD, t = 1,… , T,  
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Step 4. Concerning the linear property of the rank Function (4) can be written as: 

ℜ( ∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

) ≥ ℜ( ∑ ∑ (mjik
t′ , njik

t′ , πjik
t′ , σjik

t′ )
LR

k∈ SCi:(j,i)∈ A

), 

j ∈ ND, t = 1,… , T,  

 

∑ ∑ yijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ yjik
t

k∈ SCj:(j,i)∈ A

 ,          i ∈  NT,  

∑ ∑ zijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ zjik
t

k∈ SC

,

j:(j,i)∈ A

           i ∈  NT,  

∑ ∑ γijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ γjik
t

k∈ SCj:(j,i)∈ A

,          i ∈  NT,  

∑ ∑ δijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ δjik
t

k∈ SCj:(j,i)∈ A

,          i ∈  NT,  

ℜ(∑ ∑ (yijk
t , zijk

t , γijk
t , δijk

t )LR
j:(i,j)∈ A

T

t=1

) ≤ ℜ(gk, hk, λk, μk)LR    k ∈  SC,   

 ℜ(yijk
t , zijk

t , γijk
t , δijk

t )LR ≤ ℜ(gk
t , hk

t , λk
t , μk

t )LR,    k ∈  SC, (i, j) ∈  A, t = 1,… , T,  

yijk
t  −  γijk

t , zijk
t  −  yijk

t , γijk
t , δijk

t ≥  0,      k ∈  SC, (i, j) ∈  A, t = 1,… , T.    

Minimum    ∑ ∑ ∑ ℜ(oijk
tl , uijk

tl , φijk
tl , τijk

tl )LR
k∈ SC(i,j)∈ A

T

t=1

   l = 1,… , L, (5) 

Subject to  

 ∑ ∑ ℜ(yijk
t , zijk

t , γijk
t , δijk

t )LRk∈ SCj:(i,j)∈ A ≤  ℜ(ri
t, si

t, εi
t , ζi

t)LR,   i ∈  NPS, t = 1,… , T,  

 ∑ ∑ ℜ(yijk
t , zijk

t , γijk
t , δijk

t )LRk∈ SCj:(i,j)∈ A ≤ ℜ(mjik
t , njik

t , πjik
t , σjik

t )
LR
,     i ∈  NS, t = 1,… , T,  

∑ ∑ ℜ(yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

≥  ℜ(vj
t, wj

t, ηj
t, θj

t) ,    j ∈  NPD, t = 1,… , T,   

∑ ∑ ℜ(yijk
t , zijk

t , γijk
t , δijk

t )LR
k∈ SCi:(i,j)∈ A

≥ ∑ ∑ ℜ(mjik
t′ , njik

t′ , πjik
t′ , σjik

t′ )
LR
,

k∈ SCi:(j,i)∈ A

 

j ∈ ND, t = 1,… , T,  

 

∑ ∑ yijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ yjik
t

k∈ SC

,

j:(j,i)∈ A

    i ∈  NT,  

∑ ∑ zijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ zjik
t

k∈ SCj:(j,i)∈ A

,      i ∈  NT,  

∑ ∑ γijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ γjik
t

k∈ SCj:(j,i)∈ A

,      i ∈  NT,  

∑ ∑ δijk
t

k∈ SCj:(i,j)∈ A

= ∑ ∑ δjik
t

k∈ SCj:(j,i)∈ A

,      i ∈  NT,  

∑ ∑ ℜ(yijk
t , zijk

t , γijk
t , δijk

t )LR
j:(i,j)∈ A

T

t=1

≤ ℜ(gk, hk, λk, μk)LR,    k ∈  SC,  

 ℜ(yijk
t , zijk

t , γijk
t , δijk

t )LR ≤ ℜ(gk
t , hk

t , λk
t , μk

t )LR, k ∈  SC, (i, j) ∈  A, t = 1,… , T,  
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Step 5. With solving the crisp programming Problem (5), find the optimal compromise solution  xijk
t∗ =

(y
ijk
t∗ , zijk

t∗ , γijk
t∗ , δijk

t∗ ) LR.  

Step 6. Find the fuzzy optimal value of each objective function by putting the values of  

 

 

5|Illustrative Example 

In this section, we illustrate our method with an example. 

 

Fig. 2. Network representing Example 1. 

 

Example 1. Consider the network Fig. 2 with the following data. Fuzzy penalty for 1st objective function to 

transport commodity 1st 

Fuzzy penalty for 2nd objective function to transport commodity 1st 

Fuzzy penalty for 1st objective function to transport commodity 2nd 

Fuzzy penalty for 2nd objective function to transport commodity 2nd 

yijk
t  −  γijk

t , zijk
t  −  yijk

t , γijk
t , δijk

t ≥  0,        k ∈  SC, (i, j) ∈  A, t = 1,… , T.    

xijk
t∗ = (yijk

t∗ , zijk
t∗ , γijk

t∗ , δijk
t∗ )LR in ∑ ∑ ∑ (c̃ijk

tl ⊗ x̃ijk
t

k∈ SC(i,j)∈ A
T
t=1 ).  

c131
11 = (3, 4, 2, 2)LR,         c132

11 = (2, 3, 1, 2)LR.  

c211
11 = (4, 5, 3, 3)LR,          c212

11 = (5, 6, 3, 3)LR.  

c231
11 = (5, 7, 4, 3)LR,           c232

11 = (3, 4, 2, 3)LR.  

c131
12 = (4, 6, 3, 3)LR,         c132

12 = (3, 4, 2, 2)LR.  

c211
12 = (5, 6, 4, 3)LR,          c212

12 = (6, 7, 4, 4)LR.  

 c231
12 = (6, 8, 4, 4)LR,         c232

12 = (4, 5, 2, 3)LR.  

c131
21 = (2, 3, 1, 1)LR,         c132

21 = (2, 4, 1, 2)LR.  

c211
21 = (4, 5, 3, 2)LR,          c212

21 = (2, 3, 2, 2)LR.  

 c231
21 = (4, 6, 3, 3)LR,           c232

21 = (2, 3, 1, 2)LR.  

c131
22 = (3, 4, 2, 1)LR,         c132

22 = (3, 4, 2, 2)LR.  

c211
22 = (5, 7, 4, 3)LR,          c212

22 = (5, 6, 3, 3)LR.  
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Fuzzy availability of the commodity 1st at source node 1 and purely source node 2 

Fuzzy availability of the commodity 2nd at source node 1 and purely source node 2 

Fuzzy demand of the commodity 1st at purely destination node 3 

Fuzzy demand of the commodity 2nd at purely destination node 3 

Fuzzy capacity of the 1st conveyance for transfer of the commodities 1st and 2nd 

Fuzzy capacity of the 2nd conveyance for transfer of the commodities 1st and 2nd 

The total fuzzy capacity of the 1st and 2nd conveyances 

We assume that L(x) = R(x) = max {0, 1 − x4}. Therefore, for a fuzzy number  ã = (m, n, α, β), ℜ(ã) =
1

2
(m + n) +

4

15
(β − α) (see Remark 1 in [9]). 

The model will be as follows: 

 c231
22 = (5, 6, 4, 3)LR,           c232

22 = (2, 3, 1, 1)LR.  

a1
1′ = (30, 40, 20, 10)LR,       a2

1 = (30, 40, 20, 20)LR.  

a1
2′ = (40, 60, 20, 30)LR,       a2

2 = (40, 50, 30, 30)LR.  

b3
1 = (30, 50, 20, 30)LR.  

b3
2 = (40, 50, 30, 30)LR.  

e1
1 = (60, 70, 40, 30)LR,         e1

2 = (60, 70, 30, 30)LR.  

e2
1 = (60, 70, 30, 30)LR,          e2

2 = (60, 70, 20, 20)LR.  

e1 = (70, 70, 30, 30)LR,           e2 = (70, 80, 20, 20)LR.  

Minimum  (3, 4, 2, 2)LR ⊗  x131
1 ⊕  (2, 3, 1, 2)LR⊗ x132

1 ⊕ (4, 5, 3, 3)LR ⊗  x211
1   

⊕ (5, 6, 3, 3)LR⊗  x212
1  ⊕ (5, 7, 4, 3)LR ⊗  x231

1 ⊕ (3, 4, 2, 3)LR⊗  x232
1  

⊕ (2, 3, 1, 1)LR ⊗  x131
2 ⊕  (2,4, 1, 2)LR⊗  x132

2 ⊕ (4, 5, 3, 2)LR  ⊗  x211
2    

⊕  (2, 3, 2, 2)LR⊗  x212
2 ⊕ (4, 6, 3, 3)LR⊗ x231

2 ⊕  (2, 3, 1, 2)LR⊗  x232
2 , 

(6) 

Minimum  (4, 6, 3, 3)LR ⊗  x131
1 ⊕   (3, 4, 2, 2)LR⊗ x132

1 ⊕ (5, 6, 4, 3)LR ⊗  x211
1   

⊕ (6, 7, 4, 4)LR⊗  x212
1  ⊕ (6, 8, 4, 4)LR ⊗  x231

1 ⊕ (4, 5, 2, 3)LR⊗  x232
1  

⊕ (3, 4, 2, 1)LR ⊗  x131
2 ⊕  (3, 4, 2, 2)LR⊗  x132

2 ⊕ (5, 7, 4, 3)LR  ⊗  x211
2   ⊕

 (5, 6, 3, 3)LR⊗  x212
2 ⊕ (5, 6, 4, 3)LR⊗x231

2 ⊕  (2, 3, 1, 1)LR⊗  x232
2 , 

 

Subject to  

 x211
1  ⊕  x212

1  ⊕  x231
1  ⊕  x232

1 ≤̃ (30, 40, 20, 20)LR,  

 x211
2  ⊕  x212

2  ⊕  x231
1  ⊕  x232

2 ≤̃ (40, 50, 30, 30)LR,  

 x131
1  ⊕  x132

1  ≤̃  x211
1  ⊕  x212

1 ⊕ (30, 40, 20, 10)LR,  

 x131
2  ⊕  x132

2  ≤̃  x211
2  ⊕  x212

2 ⊕ (40, 60, 20, 30)LR,  

 x131
1  ⊕  x132

1  ⊕  x231
1  ⊕  x232

1 ≥̃ (30, 50, 20, 30)LR,  

 x131
2  ⊕  x132

2  ⊕  x231
2  ⊕  x232

2 ≥̃ (40, 50, 30, 30)LR,  

x211
1 ⊕  x231

1 ⊕  x131
1 ⊕   x211

2 ⊕  x231
2 ⊕ x131

2  ≤̃ (70, 70, 30, 30)LR,  
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And xijk
t  (i = j = 1, 2, 3, k, t = 1, 2) is a non-negative LR flat fuzzy number. Concerning Steps 3 and 4 in Section 

4, the fuzzy optimal solution can be obtained by solving the following problem: 

 x211
1  ≤̃ (60, 70, 40, 30)LR,  

 x212
1  ≤̃ (60, 70, 30, 30)LR,  

 x231
1  ≤̃ (60, 70, 40, 30)LR,  

 x232
1  ≤̃ (60, 70, 30, 30)LR,  

 x211
2  ≤̃ (60, 70, 30, 30)LR,  

 x212
2  ≤̃ (60, 70, 20, 20)LR,  

 x231
2  ≤̃ (60, 70, 30, 30)LR,  

 x231
2  ≤̃ (60, 70, 20, 20)LR.  

Minimum  
1

30
(61 y131

1 + 76 z131
1 + 8 γ131

1 + 48 δ131
1 + 38 y132

1 + 61 z132
1 + 8 γ132

1 +

40 δ132
1 + 84 y211

1 + 99 z211
1 + 8 γ211

1 + 64 δ211
1 + 99 y212

1 + 114 z212
1 + 16 γ212

1 +

72 δ212
1 + 107y231

1 + 129 z231
1 + 8 γ231

1 + 80 δ231
1 + 61y232

1 + 84 z232
1 + 8 γ232

1 + 56 δ232
1 +

38 y131
2 + 53 z131

2 + 8 γ131
2 + 32 δ131

2 + 38 y132
2 + 76 z132

2 + 8 γ132
2 + 48 δ132

2 + 84 y211
2 +

91 z211
2 + 8 γ211

2 + 56 δ211
2 + 46y212

2 + 61 z212
2 + 0 γ212

2 + 40 δ212
2 + 84y231

2 + 114 z231
2 +

8 γ231
2 + 72 δ231

2 + 38y232
2 + 61 z232

2 + 8 γ232
2 + 40 δ232

2 ), 

(7) 

Minimum  
1

30
(84 y131

1 + 114 z131
1 + 8 γ131

1 + 72 δ131
1 + 61 y132

1 + 76 z132
1 + 8 γ132

1

+ 48 δ132
1 + 107 y211

1 + 114 z211
1 + 8 γ211

1 + 72 δ211
1 + 122 y212

1

+ 137 z212
1 + 16 γ212

1 + 88 δ212
1 + 122y231

1 + 152 z231
1 + 16 γ231

1

+ 96 δ231
1 + 76y232

1 + 99 z232
1 + 16 γ232

1 + 64 δ232
1 + 61 y131

2

+ 68 z131
2 + 8 γ131

2 + 40 δ131
2 + 61 y132

2 + 76 z132
2 + 8 γ132

2 + 48 δ132
2

+ 107 y211
2 + 129 z211

2 + 8 γ211
2 + 80 δ211

2 + 99y212
2 + 114 z212

2

+ 16 γ212
2 + 72 δ212

2 + 107y231
2 + 114 z231

2 + 8 γ231
2 + 72 δ231

2

+ 38y232
2 + 53 z232

2 + 8 γ232
2 + 32 δ232

2 ),   

 

Subject to  

1

2
(y211
1 + y212

1 + y231
1 + y232

1 + z211
1 + z212

1 + z231
1 + z232

1 )

+
4

15
(δ211
1 + δ212

1 +  δ231
1 +  δ232

1 −  γ211
1 −  γ212

1 −  γ231
1 −  γ232

1 ) ≤ 35, 

 

1

2
(y211
2 + y212

2 + y231
2 + y232

2 + z211
2 + z212

2 + z231
2 + z232

2 )

+
4

15
(δ211
2 + δ212

2 +  δ231
2 +  δ232

2 −  γ211
2 −  γ212

2 −  γ231
2 −  γ232

2 ) ≤ 45, 

 

1

2
(y131
1 + y132

1 + z131
1 + z132

1 ) +
4

15
(δ131
1 + δ132

1 −  γ131
1 −  γ132

1 )

≤
1

2
(70 + y211

1 + y212
1 + z211

1 + z212
1 )

+
4

15
(δ211
1 + δ212

1 −  γ211
1 −  γ212

1 − 10), 

 

 
1

2
(y131
2 + y132

2 + z131
2 + z132

2 ) +
4

15
(δ131
2 + δ132

2 −  γ131
2 −  γ132

2 ) ≤
1

2
(100 + y211

2 + y212
2 +

 z211
2 + z212

2 ) +
4

15
(δ211
2 + δ212

2 −  γ211
2 −  γ212

2 + 10), 
 

1

2
(y131
1 + y132

1 + y231
1 + y232

1 + z131
1 + z132

1 + z231
1 + z232

1 ) +
4

15
(δ131
1 + δ132

1 + δ231
1 +

 δ232
1 −  γ131

1 −  γ132
1 − γ231

1 −  γ232
1 ) ≥

128

3
, 
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By solving this problem using the weighted sum method [24], we have 

 

 

 

 

 

 

 

 

 

 

 

 

6|Conclusion 

In this paper, we introduced a new model for fully fuzzy multiobjective multicommodity minimal cost flow 

problems in which there are several commodities to transport from sources to destinations, and there is more 

than one conveyance for this transporting. We also assume that each commodity has distinct capacities in 

each conveyance. We proposed a method for solving this problem without considering a balanced version of 

1

2
(y131
2 + y132

2 + y231
2 + y232

2 + z131
2 + z132

2 + z231
2 + z232

2 )

+
4

15
(δ131
2 + δ132

2 + δ231
2 + δ232

2 −  γ131
2 −  γ132

2 − γ231
2 −  γ232

2 ) ≥ 45, 

 

1

2
(y211
1 + y231

1 + y131
1 + y211

2 + y231
2 + y131

2 + z211
1 + z231

1 + z131
1 + z211

2 + z231
2 + z131

2 )

+
4

15
(δ211
1 + δ231

1 + δ131
1 + δ211

2 + δ231
2 + δ131

2 −   γ211
1 − γ231

1 − γ131
1

− γ211
2 − γ231

2 − γ131
2 ) ≤ 70, 

 

1

2
(y211
1 + z211

1 ) +
4

15
(δ211
1 −  γ211

1 ) ≤
187

3
 ,  

1

2
(y212
1 + z212

1 ) +
4

15
(δ212
1 −  γ212

1 ) ≤ 65,  

1

2
(y231
1 + z231

1 ) +
4

15
(δ231
1 −  γ231

1 ) ≤
187

3
,  

1

2
(y232
1 + z232

1 ) +
4

15
(δ232
1 −  γ232

1 ) ≤ 65,  

1

2
(y211
2 + z211

2 ) +
4

15
(δ211
2 −  γ211

2 ) ≤ 65,  

1

2
(y212
2 + z212

2 ) +
4

15
(δ212
2 −  γ212

2 ) ≤ 65,  

1

2
(y231
2 + z231

2 ) +
4

15
(δ231
2 −  γ231

2 ) ≤ 65,  

1

2
(y232
2 + z232

2 ) +
4

15
(δ232
2 −  γ232

2 ) ≤ 65,  

yijk
t  −  γijk

t , zijk
t  −  yijk

t , γijk
t , δijk

t ≥  0,      k ∈  SC, (i, j) ∈  A, t = 1,… , T.     

0.0627 y211
1  0.0103 y232

1  0.0415 y231
1  

0.0979 z211
1  0.0103 z232

1  0.0198 z231
1  

0 γ211
1  0.6951 γ232

1  0 γ231
1  

0 δ211
1  0 δ232

1  0 δ231
1  

0.0481 y132
1  0.0322 y131

1  0.1259 y212
1  

0.2467 z132
1  0.0322 z331

1  0.1259 z212
1  

0 γ132
1  0 γ131

1  0 γ212
1  

0 δ132
1  0.1873 δ131

1  0 δ212
1  

0.0474 y211
2  0.0437 y232

2  0.0208 y231
2  

0.087 z211
2  0.0437 z232

2  0.1824 z231
2  

0.0215 γ211
2  0 γ232

2  0 γ231
2  

0 δ211
2  0 δ232

2  0 δ231
2  

-0.4967 y132
2  -0.3316 y131

2  -0.1491 y212
2  

-1.0268 z132
2  -0.3316 z131

2  -0.1491 z212
2  

0 γ132
2  0.3438 γ131

2  0 γ212
2  

0 δ132
2  0 δ131

2  0 δ212
2  
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  that. Our method can also be considered a generalization of some methods for solving fuzzy multiobjective 

methods in the presence of equalities and fuzzy inequalities. 
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