
Manag. Anal. Soc. Insights.Vol. 1, No. 2(2024) 287–300.

Paper Type: Original Article

Nonlinear Signal Decomposition with Bilinear Hilbert Transform: A
Framework for Analytical Decision-Making Applications

Danna Ma*

Department of Mathematics , South China Agricultural University, Guangzhou, China; 1713997510@qq.com.

Abstract
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1|The Introduction of Bilinear Hilbert Transform
Denote the translation and modulation of a signal f by

Taf(t) = f(t− a), Mbf(t) = eibtf(t), t ∈ R.

The vector-valued Hilbert transform and the bilinear Hilbert transform(BHT)[4, 6] in R are defined as follows

Hf(t) = 1
π

p.v.
∫
R
f(t− x) 1

x
dx

and
H(f, g)(t) = 1

π
p.v.

∫
R
f(t− x)g(t+ x)dx

x
.

Theorem 1. BHT is bilinear transform.

Proof.
H(αf + βg, h)(t) = 1

π
p.v.

∫
R
[αf(t− x) + βg(t− x)]h(t+ x)dx

x

= 1
π

p.v.
∫
R
αf(t− x)h(t+ x)dx

x
+ 1
π

p.v.
∫
R
βg(t− x)h(t+ x)dx

x

= α
1
π

p.v.
∫
R
f(t− x)h(t+ x)dx

x
+ β

1
π

p.v.
∫
R
g(t− x)h(t+ x)dx

x

= αH(f, h)(t) + βH(g, h)(t).
Let’s verify H(f, g)(t) = H(g, f)(t)

H(f, g)(t) = 1
π

p.v.
∫
R
f(t− x)g(t+ x)dx

x

= − 1
π

p.v.
∫
R
f(x)g(2t− x) dx

t− x

H(g, f)(t) = 1
π

p.v.
∫
R
g(t− x)f(t+ x)dx

x

= 1
π

p.v.
∫
R
f(x)g(2t− x) dx

x− t

H(f, g)(t) = H(g, f)(t),BHT is bilinear transform. □

We give an alternative characterization of BHT by the Fouerier transform[7, 13]. Fix a Schwartz function ψ on
R ,let ψ = f(x− t)g(x+ t).Thereinto t is fixed and x is variable,then

< ŵ0, ψ >=< w0, ψ̂ > = 1
π

lim
ε→0

∫
|x|≥ε

ψ̂(x)dx
x

= 1
π

lim
ε→0

∫
1
ε ≥|x|≥ε

∫
R

ψ(ξ)e−2πixξdξ
dx

x

= lim
ε→0

∫
R

ψ(ξ)[ 1
π

∫
1
ε ≥|x|≥ε

e−2πixξ dx

x
]dξ

= lim
ε→0

∫
R

ψ(ξ)[−i
π

∫
1
ε ≥|x|≥ε

sin(2πxξ)dx
x

]dξ

= lim
ε→0

∫
R

ψ(ξ)[−i
π
sgn(ξ)

∫
1

2πε ≥|x|≥ ε
2π

sin(x|ξ|)dx
x

]dξ

The Lebesgue dominated convergence theorem allows the passage of the limit inside the integral.We obtain that

< ŵ0, ψ >=
∫

R

ψ(ξ)(−isgn(ξ))dξ
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This implies that

ŵ0 (x) = −isgn(x)

We use identity< ŵ0, ψ >=
∫

R
ψ(ξ)(−isgn(ξ))dξ to write

H(f, g)(t) =
(

̂f (x− t) g (x+ t) (−isgn(x))
)∨

(t)

From the above we can see that the Riesz representation theorem applies to BHT.
For all 1 < p < 2 ,we give the LP boundedness of BHT[2, 3, 5].

Lemma 2. For BHT given by

H (f, g) = 1
π
p.v.

∫
R

f (t− x) g (t+ x)
x

dx

the inequality
∥H (f, g)∥p3 ⩽ Kp1p2∥f∥p1∥g∥p2

exsits, provided 2 < p1, p2 < ∞, 1
p3

= 1
p1

+ 1
p2

and 1 < p3 < 2.

The following lemma establishes a relationship betweeen Hilbert transform and BHT by modulation operator.

Lemma 3. Set eξ(·) = ei<ξ,·>. For any ξ ∈ R, we have

H(Mξf)(t) = −M2ξH(f, e−ξ)(t), t ∈ R. (1)

Proof. By the definition of BHT and a change of variable in the integral, we get

H(f, eξ)(t) = 1
π

p.v.
∫
R
f(t− y)eξ(t+ y)dy

y

= − 1
π

p.v.
∫
R
f(y)eξ(2t− y) dy

t− y

= −ei<ξ,2t> 1
π

p.v.
∫
R
f(y)e−i<ξ,y> dy

t− y
.

By recalling the definition of modulation and Hilbert transform, we obtain

H(f, eξ)(t) = −ei<2ξ,t>H(M−ξf)(t),

that is
H(M−ξf)(t) = −M−2ξH(f, eξ)(t).

We therefore conclude that this is an alternative form of (1) by setting ξ instead of −ξ. The proof of this lemma
is finished. □

The theorem below states that Bedrosian identity[15, 16] can be formulated by BHT instead of Hilbert transform.

Theorem 4. Suppose that g ∈ L2[(0, 2π)] is 2π-periodic function of real variable. Then the Bedrosian identity

H(fg)(t) = f(t)Hg(t), t ∈ R (2)

is equivalent to
H(f, g(2t− ·))(t) = f(t)H(1, g(2t− ·))(t), t ∈ R. (3)



Proof. Since g ∈ L2[(0, 2π)], g has a convergent Fourier expansion g(t) =
∑

k∈Z ck(g)eikt. One hand, by linearity
of Hilbert transform, we have

H(fg)(t) = H

(
f(·)

∑
k∈Z

ck(g)ei<k,·>

)
(t)

=
∑
k∈Z

ck(g)H
(
f(·)ei<k,·>) (t)

=
∑
k∈Z

ck(g)H(Mkf)(t).

Using the equation (1) and the linearity of BHT implies

H(fg)(t) = −
∑
k∈Z

ck(g)M2kH(f, e−k)(t)

= −
∑
k∈Z

ck(g)ei2ktH(f, e−k)(t)

= −H

(
f,
∑
k∈Z

ck(g)ei2kte−k

)
(t)

= −H

(
f,
∑
k∈Z

ck(g)ei<k,2t−·>

)
(t)

= −H (f, g(2t− ·)) (t).

One the other hand, by the similar technique, we have that

f(t)Hg(t) = −f(t)H(1, g(2t− ·))(t).

We therefore conclude that the two equations are equivalent each other. The proof of this theorem is completed.
□

2|Bedrosian identity for nonlinear Fourier atoms
This section is focusing to investigate the Bedrosian identity of BHT type in the case that g is nonlinear Fourier
atom[8], that is, we want to study the solutions of the following equation

H (ρ, cos θa(2t− ·)) (t) = ρ(t)H (1, cos θa(2t− ·)) (t), t ∈ R. (4)

The following theorem shows that the generalized Sinc function is a special solution of above equation.

Theorem 5. The generalized Sinc function Sinca(t) := pa(t) sin t
t = sin θa(t)

t satisfies the equation (4), that is,

H(Sinca(·), cos θa(2t− ·))(t) = Sinca(t)H(1, cos θa(2t− ·))(t) = sin2 θa(t)
t

, t ∈ R. (5)

To prove this theorem, we need some preparations. The first fact is that the so called one-sided ladder shape
filter H+

a (t) = a⌊|t|⌋χR(t) and the function r(t) = 1√
2π

1
1−aeit

1−eit

−it form a pair of Fourier transform, that is

Lemma 6.

(H+
a )∧(ξ) = r(−ξ) = 1√

2π
1

1 − ae−iξ

1 − e−iξ

iξ

and

r̂(ξ) =
(

1√
2π

1
1 − aei·

1 − ei·

−i·

)∧

(ξ) = H+
a (ξ).
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Proof. The detail of calculation is below

(H+
a )∧(ξ) = 1√

2π

∫ ∞

−∞
H+

a (t)e−iξtdt

= 1 − a√
2π

∫ ∞

−∞

∞∑
k=1

ak−1χ[0,k)(t)e−iξtdt

= 1 − a√
2π

∞∑
k=1

ak−1
∫ k

0
e−iξtdt = 1 − a√

2π

∞∑
k=1

ak−1 1 − e−ikξ

iξ

= 1 − a√
2π

(
1

1 − a
− e−iξ

1 − ae−iξ

)
/(iξ) = 1√

2π
1 − ae−iξ − (1 − a)e−iξ

iξ(1 − ae−iξ)

= 1√
2π

1
1 − ae−iξ

1 − e−iξ

iξ
.

The proof of this lemma is finished. □

The second fact is the representation of cos θa(t) and sin θa(t).

Lemma 7. For real number a ∈ (−1, 1), the following equations hold

sin θa(t) = pa(t) sin t = (1 − a2) sin t
1 − 2a cos t+ a2 , t ∈ R,

cos θa(t) = (1 + a2) cos t− 2a
1 − 2a cos t+ a2 , t ∈ R.

Proof. The boundary on the unit circle of Möbius transform can conclude the two formulae. The detail is as
follows

τa(z)|z=eit = eit − a

1 − aeit
= (eit − a)(1 − ae−it)

1 − 2a cos t+ a2

= eit − 2a+ a2e−it

1 − 2a cos t+ a2 = (1 + a2) cos t− 2a
1 − 2a cos t+ a2 + i

(1 − a2) sin t
1 − 2a cos t+ a2 .

The proof of this lemma is finished. □

The third is the formula of the Hilbert transform of generalized Sinc function

Lemma 8. The Hilbert transform of Sinca is

H(Sinca)(t) = 1 + a

1 − a
pa(t)1 − cos t

t
= 1 − cos θa(t)

t
, t ∈ R. (6)

Proof. We have shown that the Fourier transform of r(t) = 1√
2π

1
1−aeit

eit−1
it is the one-sided ladder shape function

H+
a (ξ). Since r has no negative frequency, it is an analytic signal and therefore the real part and imaginary part

form a pair of Hilbert transform
H(Rer)(t) = Imr(t), t ∈ R.

Note that

r(t) = 1√
2π

(1 − a) sin t
1 − 2a cos t+ a2

1
t

+ i
1√
2π

(1 + a)(1 − cos t)
1 − 2a cos t+ a2

1
t

= 1√
2π(1 + a)

pa(t) sin t
t

+ i
1√

2π(1 − a)
pa(t)1 − cos t

t
.

We get

H

(
pa(·) sin(·)

·

)
(t) = 1 + a

1 − a
pa(t)1 − cos t

t
,



which is equivalent to

H (Sinca(·)) (t) = 1 + a

1 − a
pa(t)1 − cos t

t
.

We are left to show
1 − cos θa(t) = 1 + a

1 − a
pa(t)(1 − cos t), t ∈ R.

In fact, by the representation of cos θa(t) (see Lemma 7), we have

1 − cos θa(t) = 1 − (1 + a2) cos t− 2a
1 − 2a cos t+ a2 = (1 + a)2 − (1 + a)2 cos t

1 − 2a cos t+ a2

= (1 + a)2(1 − cos t)
1 − 2a cos t+ a2 = 1 + a

1 − a
pa(t)(1 − cos t).

The proof of this lemma is completed. □

Remark 1: This lemma indicates an interesting formula: pseudo-Bedrosian formula

H(pa(·)Sinc(·))(t) = 1 + a

1 − a
pa(t)H(Sinc(·))(t), t ∈ R.

Remark 2: There is an alternative approach to prove this lemma. By using Qian’s result[11, 12] H cos θa(t) =
sin θa(t), we get

H (Sinca(·)) (t) = 1
π

∫ ∞

−∞

sin θa(y)
y

dy

t− y

= 1
π

∫ ∞

−∞
sin θa(y)1

t
(1
y

+ 1
t− y

)dy

= 1
t

(
1
π

∫ ∞

−∞

sin θa(y)
y

dy + 1
π

∫ ∞

−∞

sin θa(y)
t− y

dy

)
= 1

t
(−H(sin θa)(0) +H(sin θa)(t)) = 1

t
(−(− cos θa(0)) − cos θa(t))

= 1 − cos θa(t)
t

.

The fourth is the Hilbert transform of the function sin(2θa(t))
2t (different from sinca(2t)).

Lemma 9. The following formula holds

H

(
sin(2θa(·))

2·

)
(t) = sin2 θa(t)

t
, t ∈ R. (7)

Proof. Direct calculation leads to

H

(
sin(2θa(·))

2·

)
(t)

= 1
π

∫ ∞

−∞

sin(2θa(y))
2y

dy

t− y

= 1
2π

∫ ∞

−∞
sin(2θa(y))1

t
(1
y

+ 1
t− y

)dy

= 1
2t

(
− 1
π

∫ ∞

−∞

sin(2θa(y))
0 − y

dy + 1
π

∫ ∞

−∞

sin(2θa(y))
t− y

dy

)
= 1

2t (−H(sin(2θa(·)))(0) +H(sin(2θa(·)))(t)) .
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Utilizing Qian’s result[11, 12] in Blaschke product case with two same parameters H cos(2θa(·))(t) = sin(2θa(t))
leads to

H

(
sin(2θa(·))

2·

)
(t) = 1

2t (−(− cos(2θa(0))) − cos(2θa(t))) = 1 − cos(2θa(t))
2t

= sin2 θa(t)
t

.

This completes the proof of this lemma. □

Now it it time to prove Theorem 5.

Proof of Theorem 5

Proof. Set ρ = Sinca. One hand, the left side of (4) equals to
Left = H (ρ, cos θa(2t− ·)) (t)

= 1
π

∫ ∞

−∞

sin θa(t− y)
t− y

cos θa(2t− (t+ y))dy
y

= 1
π

∫ ∞

−∞

sin θa(y)
y

cos θa(y) dy

t− y

= 1
π

∫ ∞

−∞

sin(2θa(y))
2y

dy

t− y
= H

(
sin(2θa(·))

2·

)
(t).

By (7), we conclude that

Left = sin2 θa(t)
t

, t ∈ R.

One the other hand, the right side of (4) is
Right = ρ(t)H (1, cos θa(2t− ·)) (t)

= sin θa(t)
t

1
π

∫ ∞

−∞
cos θa(2t− (t+ y))dy

y
= sin θa(t)

t
H cos(θa(·))(t).

Using Qian’s result[11, 12] again concludes that

Right = sin2 θa(t)
t

, t ∈ R.

The proof of this theorem is finished. □

The following theorem offers us a more generalized result.

Theorem 10. For any l2 sequence c = {ck}, the function

ρ(t) =
∑
k∈Z

ck
sin θa(t− 2kπ)

t− 2kπ =
∑
k∈Z

ckSinca(t− 2kπ), t ∈ R

satisfies the equation (4)

Proof. We first establish an important equation. By (5), i.e. (rewrite it for convenience)

H(Sinca(·), cos θa(2t− ·))(t) = Sinca(t)H(1, cos θa(2t− ·))(t) = sin2 θa(t)
t

,

we know that, for any integer k, the following equation holds
H(Sinca(·), cos θa(2(t− 2kπ) − ·))(t− 2kπ) = Sinca(t− 2kπ)H(1, cos θa(2(t− 2kπ) − ·))(t− 2kπ)

= sin2 θa(t− 2kπ)
t− 2kπ .



By the definition of ρ, the linearity of BHT and the 2π-periodicity of cos θa(·), we get
H(ρ(·), cos θ(2t− ·))(t)

=
∑
k∈Z

ckH (Sinca(· − 2kπ), cos θa(2t− ·)) (t)

=
∑
k∈Z

ck
1
π

∫ ∞

−∞
Sinca(t− y − 2kπ) cos θa(2t− (t+ y))dy

y

=
∑
k∈Z

ck
1
π

∫ ∞

−∞
Sinca((t− 2kπ) − y) cos θa(t− y)dy

y

=
∑
k∈Z

ck
1
π

∫ ∞

−∞
Sinca((t− 2kπ) − y) cos θa(2(t− 2kπ) − ((t− 2kπ) + y))dy

y

=
∑
k∈Z

ckH(Sinca(·), cos θa(2(t− 2kπ) − ·))(t− 2kπ).

By using the important equation we established at beginning, we get
H(ρ(·), cos θ(2t− ·))(t)

=
∑
k∈Z

ckSinca(t− 2kπ)H(1, cos θa(2(t− 2kπ) − ·))(t− 2kπ)

=
∑
k∈Z

ckSinca(t− 2kπ) 1
π

∫ ∞

−∞
cos θa (2(t− 2kπ) − ((t− 2kπ) + y) dy

y

=
∑
k∈Z

ckSinca(t− 2kπ) 1
π

∫ ∞

−∞
cos θa(2t− (t+ y))dy

y

=
∑
k∈Z

ckSinca(t− 2kπ)H(1, cos θa(t− ·))(t)

= ρ(t)H(1, cos θa(2t− ·))(t).
The proof of this theorem is completed. □

3|Nonlinear Sinc-function and Bilinear Hilbert transform
Lemma 11. The following equation holds

H [(HSinca) (·) cos θa(·)] (t) = (HSinca) (t) sin θa(t), t ∈ R. (8)

Proof. The fact HSinca(t) = 1−cos θa(t)
t implies that we can write the equation (8) as

H

(
1 − cos θa(·)

·
cos θa(·)

)
(t) = 1 − cos θa(t)

t
sin θa(t), t ∈ R.

Noting that −H2 equals to identity operator, we are left to show the equivalent equation

H

(
1 − cos θa(·)

·
sin θa(·)

)
(t) = −1 − cos θa(t)

t
cos θa(t), t ∈ R.

This can be checked by direct calculation combing with the equations (6) and (7)

H

(
1 − cos θa(·)

·
sin θa(·)

)
(t)

= HSinca(t) −H

(
sin(2θa(·))

2·

)
(t)

= 1 − cos θa(t)
t

− sin2 θa(t)
t

= −1 − cos θa(t)
t

cos θa(t).
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This completes the proof of this lemma. □

Theorem 12. The function ρ(t) = HSinca(t) is a solution of the equation (4), that is,

H(HSinca(·), cos θa(2t− ·))(t) = HSinca(t)H(1, cos θa(2t− ·))(t), t ∈ R. (9)

Proof. By the definition of BHT and a suitable variable changing, we get

H(HSinca(·), cos θa(2t− ·))(t) = 1
π

∫ ∞

−∞

1 − cos θa(t− y)
t− y

cos θa(t− y)dy
y

= H [(HSinca) (·) cos θa(·)] (t).

Using (8) and the identity H(1, cos θa(2t− ·))(t) = sin θa(t) shows that

H(HSinca(·), cos θa(2t− ·))(t) = (HSinca(t)) sin θa(t) = HSinca(t)H(1, cos θa(2t− ·))(t).

The proof of this theorem is completed. □

Theorem 13. For any l2 sequence d = {dk}, the function

ρ(t) =
∑
k∈Z

dk
1 − cos θa(t− 2kπ)

t− 2kπ =
∑
k∈Z

dk(HSinca)(t− 2kπ), t ∈ R

satisfies the equation (4)

Proof. By (9), we first claim that, for any integer k,

H(HSinca(·), cos θa(2(t− 2kπ) − ·))(t− 2kπ)
= HSinca(t− 2kπ)H(1, cos θa(2(t− 2kπ) − ·))(t− 2kπ), t ∈ R.

By the definition of ρ, the linearity of BHT and the 2π-periodicity of cos θa(·), we get

H(ρ(·), cos θ(2t− ·))(t)
=

∑
k∈Z

dkH ((HSinca)(· − 2kπ), cos θa(2t− ·)) (t)

=
∑
k∈Z

dk
1
π

∫ ∞

−∞
(HSinca)(t− y − 2kπ) cos θa(2t− (t+ y))dy

y

=
∑
k∈Z

dk
1
π

∫ ∞

−∞
(HSinca)((t− 2kπ) − y) cos θa(t− y)dy

y

=
∑
k∈Z

dk
1
π

∫ ∞

−∞
(HSinca)((t− 2kπ) − y) cos θa(2(t− 2kπ) − ((t− 2kπ) + y))dy

y

=
∑
k∈Z

dkH((HSinca)(·), cos θa(2(t− 2kπ) − ·))(t− 2kπ).

Therefore, we obtain

H(ρ(·), cos θ(2t− ·))(t)
=

∑
k∈Z

dk(HSinca)(t− 2kπ)H(1, cos θa(2(t− 2kπ) − ·))(t− 2kπ)

=
∑
k∈Z

dk(HSinca)(t− 2kπ)H(1, cos θa(2t− ·))(t)

= ρ(t)H(1, cos θa(2t− ·))(t).

This completes the proof of this theorem. □



Theorem 14. For any sequence pairs c and d in l2(Z), the function

ρ(t) =
∑
k∈Z

ckSinca(t− 2kπ) +
∑
k∈Z

dk(HSinca)(t− 2kπ)

satisfies the equation (4).

Proof. This is a direct conclusion of previous two theorems by utilizing the linearity of bilinear Hilbert transform.
□

4|Necessity
Lemma 15. For any real number a with |a| < 1, the following identity holds

∞∑
l=1

∞∑
m=1

al−1am−1min{l,m} = 1
(1 − a)3 (1 + a) .

Proof.

∞∑
l=1

∞∑
m=1

al−1am−1min{l,m}

= (
∑
m≥l

+
∑
m<l

)al−1am−1min{l,m} =
∞∑

m=1

m∑
l=1

al−1 am−1 l +
∞∑

l=2

l−1∑
m=1

am−1 al−1 m

Note that

m∑
l=1

lal−1 = d

da
(

m∑
l=1

al) = d

da
(a− am+1

1 − a
) = 1 − (m+ 1)am +mam+1

(1 − a)2

and

l−1∑
m=1

mam−1 = d

da
(

l−1∑
m=1

am) = d

da
(a− al

1 − a
) = 1 − lal−1 + (l − 1)al

(1 − a)2 .
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(

( ( )

)

We therefore get that, for any integer n,∫ ∞

−∞

√
(

+ (

,0= δn,0.

Thus
∞∑

l=1

∞∑
m=1

al−1am−1min{l,m}

=
∞∑

m=1
am−1 1 − (m+ 1)am +mam+1

(1 − a)2 +
∞∑

l=2
al−1 1 − lal−1 + (l − 1)al

(1 − a)2

=
∞∑

m=1
am−1 1 − (m+ 1)am +mam+1

(1 − a)2 +
∞∑

m=1
am 1 − (m+ 1)am +mam+1

(1 − a)2

= 1
(1 − a)2

∞∑
m=1

(
am−1 − (m+ 1)a2m−1 +ma2m + am − (m+ 1)a2m +ma2m+1)

= 1
(1 − a)2

∞∑
m=1

(
am−1 + am − a2m

)
+ 1

(1 − a)2

∞∑
m=1

(
ma2m+1 − (m+ 1)a2m−1)

= 1
(1 − a)2

∞∑
m=1

(
am−1 + am − a2m

)
+ 1

(1 − a)2

∞∑
m=1

ma2m+1 − 1
(1 − a)2

∞∑
m=0

(m+ 2)a2m+1

= 1
(1 − a)2

∞∑
m=1

(
am−1 + am − a2m

)
− 2a

(1 − a)2 − 2
(1 − a)2

∞∑
m=1

a2m+1

= 1
(1 − a)2

(
1

1 − a
+ a

1 − a
− a2

1 − a2

)
− 2a

(1 − a)2 − 2
(1 − a)2

a3

1 − a2

= 1
(1 − a)3(1 + a)

(
(1 + a) + a(1 + a) − a2 − 2a(1 + a)(1 − a) − 2a3)

= 1
(1 − a)3(1 + a)

(
1 + a+ a+ a2 − a2 − 2a+ 2a3 − 2a3) = 1

(1 − a)3(1 + a) .

The following theorem offers us the result of orthogonality[9, 14].

Theorem 16. The system {
√

1−a
π(1+a) Sinca(· − nπ) : n ∈ Z} is an orthonormal system.

Proof. We know that

Sinca(t) = pa(πt)Sinc(πt) = (1 − a2 )
∞∑

l=1
al−1 sin lπt

πt .

The Fourier transform of Sinca is

(Sinca)∧ (ξ) = (1 − a2)
∞∑

l=1
al−1 1√

2π
χ[−lπ,lπ](ξ).

We therefore get that, for any integer n,∫ ∞

−∞

√
1 − a

1 + a
Sinca(t)

√
1 − a
1 + a Sinca(t − n)dt

= 1 − a

1 + a

(1 − a2)2

2π

∫ ∞

−∞

∞∑
l=1

∞∑
m=1

al−1am−1χ[−lπ,lπ](ξ)χ[−mπ,mπ](ξ)einξdξ

= (1 − a)3(1 + a)
2π

∞∑
l=1

∞∑
m=1

al−1am−1
∫

[−lπ,lπ]∩[−mπ,mπ]
einξdξ

= (1 − a)3(1 + a)
∞∑

l=1

∞∑
m=1

al−1am−1min{l,m}δn,0

= δn,0.



5|A Framework for Analytical Decision-Making Applications
The Bilinear Hilbert Transform (BHT) offers a powerful framework for enhancing decision-making processes in
environments where nonlinear signals[1, 10] and real-time data are critical. By decomposing complex signals,
the BHT provides deeper insights, enabling more informed decisions across a variety of domains.

5.1|Signal Decomposition for Better Insights
The BHT’s ability to decompose nonlinear signals allows decision-makers to uncover hidden patterns in data,
leading to better predictions and responses. For example, in predictive maintenance, the BHT helps detect early
signs of equipment failure by analyzing complex signal behaviors. Similarly, in finance, it reveals trends and
volatility in stock prices, improving investment strategies.

5.2|Integration of Bedrosian Identity
The Bedrosian identity plays a key role in combining different signal components while maintaining their integrity.
This is especially useful in models involving multiple interacting variables, such as economic forecasting, where
inflation, interest rates, and currency values need to be harmonized for accurate predictions.

5.3|Generalized Sinc Functions for Precision
Generalized Sinc functions enhance the precision of signal decomposition in BHT, improving the accuracy of
models in fields such as biomedical signal processing or industrial control. These functions allow for more reliable
interpretations of sensor data, leading to optimized processes and improved decision outcomes.

5.4|Real-Time Decision-Making and Multi-Domain Use
The BHT’s real-time processing capability makes it ideal for applications requiring immediate action, such as
telecommunications or supply chain management. Its adaptability extends to multiple fields, including healthcare,
finance, and environmental monitoring, where it aids in optimizing resource use and improving response times.

5.5|Integration with Future Technologies
By integrating BHT with machine learning, decision-making processes can become more automated and adaptive.
For example, in autonomous systems, BHT enhances real-time sensor data processing, improving machine
learning models’ performance. As industries move toward Industry 5.0, this framework provides a way to combine
human insight with machine efficiency, particularly in sustainable practices.

6|Conclusion
With the Hilbert transform, we define the bilinear Hilbert transform. We have demonstrated some
properties of BHT.The generalized Sinc function is a special solution of H↼ρ,cosθa↼2t− ·⇒⇒ ⇐t↽ /
ρ↼t↽H↼1,cosθa↼2t− ·⇒⇒ ⇐t↽.After that, we consider some the nonlinear Sinc function, which is also the
solution of this equation.Last,The nonlinear Sinc function system {

√
1−a

π(1+a) Sinca( · − nπ↽ .n ∈ Z} is an
orthonormal system.
Additionally, we have introduced a framework that extends BHT’s utility into analytical decision-making
applications.This framework leverages the decomposition properties of the BHT to support real-time
decision-making, precision modeling, and integration with AI technologies across multiple fields. The BHT
enables more accurate and responsive decision-making, particularly in environments that require the handling
of complex nonlinear data and real-time signal processing. Moreover, by applying this framework to various
industries such as finance, healthcare, and industrial optimization, we highlight the versatility of the BHT
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in improving efficiency and predictive accuracy. As industries continue to adopt AI-driven and real-time
decision-making tools, the BHT framework offers an adaptable and scalable solution for future technological
advancements, aligning with the principles of Industry 5.0 and sustainable practices.
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