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Abstract

Research on the applications of graph theory has also been conducted in areas such as Agricultural
and Ecological Systems. Hypergraphs generalize graphs by allowing hyperedges to join any number
of vertices, while superhypergraphs further extend this idea by layering iterated powersets to capture
hierarchical, self-referential connections. A food web models an ecosystem as a directed graph whose
nodes are species and whose edges represent predator—prey interactions. In this paper, we introduce two
novel extensions of classical food webs: the Food HyperWeb, which encodes each predator’s entire prey set
as a hyperedge, and the Food n-SuperHyper Web, which embeds multilevel trophic relationships within an
n-fold superhypergraph structure. We provide formal definitions, establish their foundational properties,
and present illustrative examples demonstrating their effectiveness for agricultural and ecological network
analysis.
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1| Preliminaries

This section introduces the fundamental concepts and definitions that underpin the discussions in this paper.
Throughout, all sets are assumed to be finite.

1.1| Power Set and the n-th Iterated Power Set

For a given set .S, its power set is the family of all subsets of 5, including both the empty set and S itself. The

n-th iterated power set of S is obtained by repeatedly applying the power set operation n times, beginning with
S [1, 2].

Definition 1.1 (Universal Set). Let U denote a set that contains every element under discussion. Throughout,
any set S is assumed to satisfy S C U.

Definition 1.2 (Base Set). A base set S is defined as a subset of U that serves as the starting point for further
constructions, such as power sets and hyperstructures.

Definition 1.3 (Power Set). [3] The power set of a set S, written P(S5), is given by
PS)={X|XCS}

Definition 1.4 (Iterated Power Set). [4, 5, 6, 7] For each integer n > 1, the n-fold iterated power set of S is
defined recursively as
PLS) = P(9),
PEHL(S) = P(PH(S)), k=>1.
Equivalently, one may denote P, (S) = P™(S).

Definition 1.5 (Nonempty Iterated Power Set). [4, 8] The nonempty iterated power set is given by
Pi(S) = P(5)\ {2},
Pina(8) =P (Pi(S)), k=1,
where, for any set X, one writes P*(X) = P(X) \ {2}.

Example 1.6 (Nonempty Iterated Power Set in Beverage Selection). Let S = {Tea, Coffee} represent two drink
options. Then:
Pi(S) =P(S)\ {2}
= {{Tea}, {Coffee}, {Tea, Coffee}}.
The second-level nonempty iterated power set is

P;(8) =P (P1(95))
= {{{Tea}}, {{Coffee}}, {{Tea, Coffee}}, {{Tea}, {Coffee}},
{{Tea}, {Tea, Coffee}}, {{Coffee}, {Tea, Coffee}}, {{Tea}, {Coffee}, {Tea, Coffee}}}.

For instance, {{Tea}, {Coffee}} € P5(S) can model offering both a “tea-only” service and a “coffee-only” service
as distinct package options. One may continue to Pj(S) = P*(P5(S)), whose elements are nonempty collections
of these service-packages.
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Example 1.7 (Crop rotations; a concrete nonempty iterated power set for |S| = 3). Let the set of candidate
crops be
S = {Wheat, Corn, Soybean}.
Then
P;(S) = {{Wheat}, {Corn}, {Soybean}, {Wheat, Corn}, {Wheat, Soybean},
{Corn, Soybean}, {Wheat, Corn, Soybean}},
so [P;(S)| =23 — 1 =17. The next level is
P3(S) =P(Pi(5)) \ {2},
1P5(S) =27 —1=127.
Two explicit elements of P (S) are

Ay = {{Wheat}, {Corn, Soybean}}, Ay = {{Wheat, Corn}, {Wheat, Soybean}, {Wheat, Corn, Soybean}}.

Agricultural interpretation: elements of Py (S) are concrete rotation blocks (e.g. {Corn, Soybean} for a two-year
rotation); elements of Pj(S) are sets of such blocks (e.g. portfolios of rotations assigned to different fields or
planning scenarios compared at the farm scale).

Example 1.8 (Crop rotations; a concrete nonempty iterated power set for |S| = 3). Let the set of candidate
crops be
S = {Wheat, Corn, Soybean}.
Then
P;(S) = {{Wheat}, {Corn}, {Soybean}, {Wheat, Corn}, {Wheat, Soybean},
{Corn, Soybean}, {Wheat, Corn, Soybean}},
so |Pf(S)] =23 — 1 =7. The next level is
P5(S) =P(Pi(9) \{e},  [P5(S)|=2"—1=12T.
Two explicit elements of P3(S) are

Ay = {{Wheat}, {Corn, Soybean}}, Ay = {{Wheat, Corn}, {Wheat, Soybean}, {Wheat, Corn, Soybean} }.

Agricultural interpretation: elements of Py (S) are concrete rotation blocks (e.g. {Corn, Soybean} for a two-year
rotation); elements of Pj(S) are sets of such blocks (e.g. portfolios of rotations assigned to different fields or
planning scenarios compared at the farm scale).

Example 1.9 (Field operations (management bundles); a concrete nonempty iterated power set for |S| = 4).
Let
S = {Tillage, Sowing, Irrigation, Fertilization}.

Then
P(S) = {{Tillage}, {Sowing}, {Irrigation}, {Fertilization},

{Tillage, Sowing}, {Tillage, Irrigation}, {Tillage, Fertilization},
{Sowing, Irrigation}, {Sowing, Fertilization}, {Irrigation, Fertilization},
{Tillage, Sowing, Irrigation}, {Tillage, Sowing, Fertilization},

{Tillage, Irrigation, Fertilization}, {Sowing, Irrigation, Fertilization},

{Tillage, Sowing, Irrigation, Fertilization}}.
so [Pf(S)] =2*—1=15and
|P5(S)] =21'° — 1 = 32767.
Two explicit elements of P3(S) are

By = {{Tillage, Sowing}, {Irrigation}},

By = {{Sowing,Fertilization}, {Irrigation, Fertilization}, {Tillage, Sowing, Irrigation,Fertilization}}.
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Agricultural interpretation: members of P;(S) are operation bundles applied together (e.g. {Tillage, Sowing} at
establishment); members of P;(S) are sets of bundles (e.g. alternative management templates to be compared
across fields, seasons, or irrigation availability scenarios).

1.2| Hypergraphs and SuperHypergraphs

Hypergraphs generalize ordinary graphs by allowing each hyperedge to join an arbitrary nonempty subset of
vertices, thereby modeling higher-order relations among elements [9, 10, 11]. A SuperHyperGraph further extends
this idea by incorporating iterated powerset structures, enabling multi-layered, self-referential connections among
hyperedges [12, 13, 14, 15].

Definition 1.10 (Hypergraph). [9, 16] Let V be a finite set of vertices. A hypergraph is a pair

H=(V,E), ECPV)\{a},

where each element of F is called a hyperedge. No restriction is imposed on the size of a hyperedge.

Example 1.11 (Agricultural Hypergraph: crop rotations across fields). Let the vertex set be candidate crops
V = {Wheat, Corn, Soybean, Canola}.

Each field’s multi-year rotation induces a hyperedge equal to the set of crops appearing in that field’s plan:

erield 1 = {Wheat, Soybean},

erield 2 = {Corn, Soybean, Wheat },

erield 3 = {Canola}.
Then H = (V, E) with E = {epicld 1, €Ficld 2, €Ficld 31 C P(V) \ {@} is a hypergraph per Definition 1.10. Each
hyperedge captures a (possibly multi-year) rotation used on a specific field.
Definition 1.12 (n-SuperHyperGraph). [12] Let V) be a finite base set. Define the iterated powersets by

P(Vo) = Vo,
P (Vo) = P(PF(Vo)), k=>0.
For a fixed n > 1, an n-SuperHyperGraph is a pair
SHG™ = (V, E),

where
V,ECP"(Vy) and V #0, E+#0o.

Elements of V' are called n-supervertices and elements of E are called n-superedges.

Example 1.13 (Corporate Hierarchy as a 2-SuperHyperGraph). Let the set of employees be
Vo ={A4,B,C,D},
with A = Alice, B = Bob, C' = Carol, and D = Dave. First-level subsets (teams) are chosen as
T, ={A,B}, T,={C,D},
so T1,T» € P(Vp). Next, define two departments as elements of the second-level iterated power set:
Dy ={Ti}, Dy={Tp}, so{Di, D3} CP*(Vp).

Thus we set
Vo ={D1, D2} CP*(Vo), Bz ={{D1,D2}} CP*(Vp).
The pair
F@ = (Vy, B)
is a 2-SuperHyperGraph encoding the hierarchy: employees — teams — departments — the company division.
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Example 1.14 (Agricultural n=1 SuperHyperGraph: management bundles and protocols). Let the base set
collect crops, inputs, and practices

Vo = {Wheat, Corn, Urea (N), DAP (P), Drip, Sprinkler, HerbicideA}.
Fix n = 1. Choose 1-supervertices (nonempty subsets of V;) that represent reusable management bundles:
vy = {Wheat, Urea (N)}, w2 = {Corn,DAP (P)}, w3 = {Drip}, w4 = {HerbicideA, Sprinkler}.

Set V' = {v1,v2,v3,v4} C PY(Vp). Define superedges (each a nonempty subset of V) to encode whole-field
protocols:

er = {v1,v3} (Wheat + N with drip irrigation), e2 = {va,v4} (Corn + P with herbicide under sprinkler).

Then SHG = (V,E) with E = {ej,ea} CP(V)\ {@} is an n=1 SuperHyperGraph per Definition 1.12. Here,
supervertices are management bundles (collections of base actions/resources), and superedges bundle those
bundles into implementable protocols.

1.3| Food Web

A food web is a directed graph representing species as nodes and predator—prey interactions as directed edges in
an ecosystem[17, 18, 19, 20, 21].

Definition 1.15 (Food Web). [17, 18] Let V be a finite set whose elements represent biological species (or
trophic groups) in an ecosystem. A food web is the directed graph

G = (V.B),
where the edge set E C V x V satisfies
(u,v) € E <= species u preys upon species v.
We require additionally that
e There are no self-loops: (v,v) € E for allv € V.
e There are no parallel edges: F is a set (not a multiset).

Thus G encodes all direct predator—prey relationships among the species in the ecosystem.

Example 1.16 (Simple Pond Food Web). Consider a small pond ecosystem with five trophic levels:
V:{A7 Z7 S7 B7 D}7

where

A = Algae

7 = Zooplankton
e S = Small Fish
e B = Big Fish
e D = Duck
The predator—prey relationships are captured by
E={(2.A), (5.2). (B,S), (D,B), (D,S)},
meaning:
Z— A

S—Z

(zooplankton eats algae),
(
B—S (big fish eat small fish),
(
(

small fish eat zooplankton),

D— B duck eats big fish),
D—S duck also eats small fish).
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Thus the directed graph G = (V, E) illustrates a simple pond food web.

2| Main Results

In this section, we formally define the concepts of the Food HyperWeb and the Food SuperHyperWeb, and
briefly examine their structural properties.

2.1] Food HyperWeb

Food HyperWeb is a hypergraph whose vertices represent species and whose hyperedges correspond to each
predator’s unique complete prey set.

Definition 2.1 (Base Food Web). Let 1} be a finite set of species and let
G = (Vo, Eo)
be the directed graph (the Food Web) where (u,v) € Ey if and only if species u preys upon species v.

Definition 2.2 (Food HyperWeb). Let G = (Vj, Eg) be a Food Web. Define the Food HyperWeb
H = (W,E)

by
Vi =V, E1:{eugVo:euz{UEVO:(u,v)eEo},eu;zéz}.
Each hyperedge e, collects all prey of predator u.

Example 2.3 (Simple Pond Food HyperWeb). Consider the same small pond ecosystem as in the Food Web
example:
VO = {A7 Z7 S? Bv D}a
where
Ey = {(Zv A)v (Sa Z)v (B,S), (DyB)v (Dvs)}v

with species labels:

o A: Algae

e 7: Zooplankton
S: Small Fish
e B: Big Fish
e D: Duck

The Food HyperWeb H = (V1, E) is obtained by grouping each predator’s prey into a hyperedge:

Vi=W, E, ={ez, es, ep, en},

where
ez = { A}, (zooplankton eats algae);
es ={7Z}, (small fish eat zooplankton);
e ={S}, (big fish eat small fish);

ep ={B, S}, (duck eats big fish and small fish).
Thus H is the hypergraph whose vertices are the five species and whose hyperedges capture each predator’s full
prey set.

Example 2.4 (Marine Food HyperWeb). Consider a simple marine ecosystem with six species:
‘/E):{Pa Za K? F7 Sa H}7

where
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P: Phytoplankton

Z: Zooplankton
K: Krill

F: Small Fish

o S: Seal

e H: Shark
The predator—prey relations (the Food Web G = (Vp, Ep)) are

Fo = {(Z.P), (K, 2), (F,K), (F,2), (S,F), (S.K), (H,S), (H,F)}.
From this we form the Food HyperWeb H = (Vi, E1) with V; =V and
By ={ez,ex,er,es,en},

where each hyperedge collects all prey of a given predator:

ez = { P}, (zooplankton eats phytoplankton);
ex =1{7}, (krill eats zooplankton);

er ={K, Z}, (small fish eat krill and zooplankton);
es ={F, K}, (seal eats small fish and krill);

eg =185, F}, (shark eats seal and small fish).

Thus H is the hypergraph whose vertices are the six marine species and whose hyperedges exactly describe each
predator’s full prey set.
Theorem 2.5 (Food HyperWeb is a Hypergraph). Let H = (V1, Ey) be the Food HyperWeb constructed from a
Food Web G = (Vy, Ey) as in Definition 2.1. Then

E1 Q P(Vl) \ {@}, Vl 18 ﬁm’te,

so H satisfies the axzioms of a finite hypergraph.

Proof: By definition V3 = Vj is finite. Each hyperedge
en = {veV;:(u,v)€ Ey}

is nonempty exactly when u preys on at least one species, hence e, € P(V1) \ {@}. Moreover, the assignment
u +—> e, is injective, so there are no duplicate hyperedges. Thus H meets the standard definition of a finite
hypergraph [10]. O

Theorem 2.6 (Reconstruction of Food Web by Flattening). The original Food Web G = (Vy, Ey) is recovered
from the Food HyperWeb H = (V1, Ey) via

Ey = {(u,v) eVixViivEe,, e, € E1}.

Proof: By construction e, = {v: (u,v) € Ep}. Hence
(u,v) € By <= v E ey,

so the directed edges of GG coincide exactly with the incidences of vertices in hyperedges of H. Therefore flattening
H recovers Ej. O
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2.2| Food SuperHyperWeb

Food SuperHyperWeb is an n-superhypergraph whose vertices are iterated species subsets and whose hyperedges
encode complete multilevel hierarchical predator—prey relationships.

Definition 2.7 (Food n-SuperHyperWeb). Let G = (Vp, Ey) be a finite directed graph (the Food Web), and for
each u € V write
P(u) = {veVy: (u,v) € Ep}
for its prey set. Fix an integer n > 1, and let P"™(V}) denote the n-fold iterated powerset of Vy. Define
= P"(Vo), B, = {eM:ueVy, Pu)#a, el =P"(Pu))}.

Then the pair
F" = (V,, En)
is called the Food n-SuperHyperWeb.

Example 2.8 (Forest Ecosystem as a Food 2-SuperHyperWeb). Let the species set be
Vo ={G, M, O, F},
where
G = Grass, M = Mouse, O =Owl, F = Fox.
The Food Web G = (Vp, Ey) has predator—prey arcs
Ey={(M,G), (O,M), (F,0), (F,M)}.
For each u € Vj, its prey set is
P(M) ={G}, P(O) ={M}, P(F)={0, M}, P(G) =
Fix n = 2. Then
=P3(Vy), Ex={e?:ue{M,0,F}}
with
ey = 7’2( (M)) =P*({G}) = {0, {0}, {{G}}, {0.{G}} },
= P¥( {M} {0, {0}, {{p}}, {0, {M}}},
=P*({0,M}),
which has 22" = 16 elements (all subsets of P({O, M})). Thus
F® = (V3, B,)
is the Food 2-SuperHyperWeb encoding the multi-level trophic structure:

species — prey sets 3> collections of prey-sets.

Example 2.9 (Agricultural Food 2-SuperHyperWeb). Let the set of trophic species be
Vo ={G, I, C, Co, H},
where
G = Grass, I =Insect, C = Chicken, Co = Cattle, H = Human.
The Food Web G = (Vp, Ey) has predator—prey arcs
Ey={(1,G), (C,I), (Co,@), (H,C), (H,Co)}.
Hence each prey set is
P(I)={G}, P(C)={I}, P(Co)={G}, P(H)={C,Co}.
Fix n = 2. Then
=P2(Vo), Ex={e? :ue{l,C Co H}},
with

e = P2({G}) = {o,{2}, {{G}}. {2, {G}}},
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2
c¢’ =P*({1}) = {.{2}. ({1}}. {2, {1}}}.
e(gg =P*({G}) (same as e&Q)),
eg) = p? ({C,Co}),
which has 22° = 16 elements, each representing a possible “meal bundle” drawn from the basic prey sets {C, Co}.
Therefore
F® = (Va, Ey)

is the Food 2-SuperHyperWeb encoding both primary producer consumption and human dietary options in a
two-layer superhypergraph structure.

Theorem 2.10. F(") = (V,,, E,)) is an n-SuperHyperGraph.

Proof: By construction V;, is a finite set and each hyperedge
elM) = pn (P(u))

is a nonempty element of P™(Vp). Distinct predators w yield distinct hyperedges, so there are no duplicates.
Hence F(™ satisfies the definition of an n-SuperHyperGraph. O

Theorem 2.11 (Generalization of Food HyperWeb and Food Web). Define the “full flattening” of a nested set
by taking the union of all its elements at every level. Since
& = P (Pa)

flattening eq(ln) recovers exactly the prey set P(u). Therefore

{Pu):ueVy, Pluy#2}=E; and {(u,v):ve P(u)} = Ey,

showing that F") simultaneously generalizes the Food HyperWeb H = (Vo, E1) and the original Food Web
G =V, Ey).

Proof: Immediate from the identity Uy . U -UX = P(u) and the definitions of £y and Ej. O

3| Conclusion and Future Works

In this paper, we introduced two novel extensions of classical food webs: the Food HyperWeb, which encodes
each predator’s entire prey set as a hyperedge, and the Food n-SuperHyper Web, which embeds multilevel trophic
relationships within an n-fold superhypergraph structure.

For future work, we plan to explore practical applications of these models in real ecological and agricultural
networks. Additionally, we aim to extend the framework using uncertainty-based approaches such as Fuzzy Sets
[22, 23], Intuitionistic Fuzzy Sets [24, 25], HyperFuzzy Sets[26, 27|, Bipolar Fuzzy Sets[28, 29], Neutrosophic
Sets[30, 31, 32], Hesitant Fuzzy Sets[33, 34], and Plithogenic Sets[35, 36] to better handle ambiguity and
incomplete information in ecological systems.
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