Management Analytics and Social Insights

www.masi.reapress.com

Manag. Anal. Soc. Insights. Vol. 2, No. 4 (2025) 275-286.

Paper Type: Original Article

A Unified Hypergraph- and SuperHyperGraph-Based Framework for Food Web Extension: From Classical Food Webs to SuperHyperWebs in Agricultural and Ecological Systems

Takaaki Fujita¹

Citation:

Received: 14 March 2025 Revised: 21 April 2025 Accepted: 21 July 2025

T.Fujita (2025). A unified hypergraph-and superhypergraphbased framework for food web extension: From classical food webs to superhyperwebs in agricultural and ecological systems. Management analytics and social insights, 2(4), 275-286

Abstract

Research on the applications of graph theory has also been conducted in areas such as Agricultural and Ecological Systems. Hypergraphs generalize graphs by allowing hyperedges to join any number of vertices, while superhypergraphs further extend this idea by layering iterated powersets to capture hierarchical, self-referential connections. A food web models an ecosystem as a directed graph whose nodes are species and whose edges represent predator-prey interactions. In this paper, we introduce two novel extensions of classical food webs: the Food HyperWeb, which encodes each predator's entire prey set as a hyperedge, and the Food n-SuperHyperWeb, which embeds multilevel trophic relationships within an n-fold superhypergraph structure. We provide formal definitions, establish their foundational properties, and present illustrative examples demonstrating their effectiveness for agricultural and ecological network analysis.

Keywords: Superhypergraph, Hypergraph, Food web, Food hyperweb, Food n-superhyperweb

🦳 Corresponding Author: Takaaki.fujita060@gmail.com

Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

¹Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan; Takaaki.fujita060@gmail.com.

1 Preliminaries

This section introduces the fundamental concepts and definitions that underpin the discussions in this paper. Throughout, all sets are assumed to be finite.

1.1 Power Set and the *n*-th Iterated Power Set

For a given set S, its power set is the family of all subsets of S, including both the empty set and S itself. The n-th iterated power set of S is obtained by repeatedly applying the power set operation n times, beginning with S [1, 2].

Definition 1.1 (Universal Set). Let U denote a set that contains every element under discussion. Throughout, any set S is assumed to satisfy $S \subseteq U$.

Definition 1.2 (Base Set). A base set S is defined as a subset of U that serves as the starting point for further constructions, such as power sets and hyperstructures.

Definition 1.3 (Power Set). [3] The power set of a set S, written $\mathcal{P}(S)$, is given by

$$\mathcal{P}(S) = \{ X \mid X \subseteq S \}.$$

Definition 1.4 (Iterated Power Set). [4, 5, 6, 7] For each integer $n \ge 1$, the *n*-fold iterated power set of S is defined recursively as

$$\mathcal{P}^1(S) = \mathcal{P}(S),$$

 $\mathcal{P}^{k+1}(S) = \mathcal{P}(\mathcal{P}^k(S)), \quad k \ge 1.$

Equivalently, one may denote $P_n(S) = \mathcal{P}^n(S)$.

Definition 1.5 (Nonempty Iterated Power Set). [4, 8] The nonempty iterated power set is given by

$$\mathcal{P}_1^*(S) = \mathcal{P}(S) \setminus \{\emptyset\},$$

$$\mathcal{P}_{k+1}^*(S) = \mathcal{P}^*(\mathcal{P}_k^*(S)), \quad k \ge 1,$$

where, for any set X, one writes $\mathcal{P}^*(X) = \mathcal{P}(X) \setminus \{\emptyset\}$.

Example 1.6 (Nonempty Iterated Power Set in Beverage Selection). Let $S = \{\text{Tea}, \text{ Coffee}\}\$ represent two drink options. Then:

$$\begin{split} \mathcal{P}_1^*(S) &= \mathcal{P}(S) \setminus \{\varnothing\} \\ &= \big\{ \{\mathsf{Tea}\}, \ \{\mathsf{Coffee}\}, \ \{\mathsf{Tea}, \mathsf{Coffee}\} \big\}. \end{split}$$

The second-level nonempty iterated power set is

$$\begin{split} \mathcal{P}_2^*(S) &= \mathcal{P}^* \big(\mathcal{P}_1^*(S) \big) \\ &= \Big\{ \{ \{\mathsf{Tea}\} \}, \ \{ \{\mathsf{Coffee}\} \}, \ \{ \{\mathsf{Tea}, \mathsf{Coffee}\} \}, \ \{ \{\mathsf{Tea}\}, \{\mathsf{Coffee}\} \}, \ \{ \{\mathsf{Tea}\}, \{\mathsf{Coffee}\} \}, \ \{ \{\mathsf{Tea}\}, \{\mathsf{Coffee}\} \} \Big\}. \end{split}$$

For instance, $\{\{\text{Tea}\}, \{\text{Coffee}\}\}\in \mathcal{P}_2^*(S)$ can model offering both a "tea-only" service and a "coffee-only" service as distinct package options. One may continue to $\mathcal{P}_3^*(S) = \mathcal{P}^*(\mathcal{P}_2^*(S))$, whose elements are nonempty collections of these service-packages.

Example 1.7 (Crop rotations; a concrete nonempty iterated power set for |S| = 3). Let the set of candidate crops be

$$S = \{ \text{Wheat, Corn, Soybean} \}.$$

Then

$$\mathcal{P}_1^*(S) = \{\{\text{Wheat}\}, \{\text{Corn}\}, \{\text{Soybean}\}, \{\text{Wheat}, \text{Corn}\}, \{\text{Wheat}, \text{Soybean}\}, \{\text{Corn}, \text{Soybean}\}, \{\text{Wheat}, \text{Corn}, \text{Soybean}\}\},$$

so $|\mathcal{P}_{1}^{*}(S)| = 2^{3} - 1 = 7$. The next level is

$$\mathcal{P}_2^*(S) = \mathcal{P}(\mathcal{P}_1^*(S)) \setminus \{\emptyset\},$$
$$|\mathcal{P}_2^*(S)| = 2^7 - 1 = 127.$$

Two explicit elements of $\mathcal{P}_2^*(S)$ are

$$A_1 = \{\{\text{Wheat}\}, \{\text{Corn}, \text{Soybean}\}\}, \qquad A_2 = \{\{\text{Wheat}, \text{Corn}\}, \{\text{Wheat}, \text{Soybean}\}\}, \{\text{Wheat}, \text{Corn}, \text{Soybean}\}\}.$$

Agricultural interpretation: elements of $\mathcal{P}_1^*(S)$ are concrete rotation blocks (e.g. {Corn, Soybean} for a two-year rotation); elements of $\mathcal{P}_2^*(S)$ are sets of such blocks (e.g. portfolios of rotations assigned to different fields or planning scenarios compared at the farm scale).

Example 1.8 (Crop rotations; a concrete nonempty iterated power set for |S| = 3). Let the set of candidate crops be

$$S = \{ Wheat, Corn, Soybean \}.$$

Then

$$\mathcal{P}_1^*(S) = \{\{\text{Wheat}\}, \{\text{Corn}\}, \{\text{Soybean}\}, \{\text{Wheat}, \text{Corn}\}, \{\text{Wheat}, \text{Soybean}\}, \{\text{Corn}, \text{Soybean}\}, \{\text{Wheat}, \text{Corn}, \text{Soybean}\}\},$$

so $|\mathcal{P}_{1}^{*}(S)| = 2^{3} - 1 = 7$. The next level is

$$\mathcal{P}_{2}^{*}(S) = \mathcal{P}(\mathcal{P}_{1}^{*}(S)) \setminus \{\emptyset\}, \qquad |\mathcal{P}_{2}^{*}(S)| = 2^{7} - 1 = 127.$$

Two explicit elements of $\mathcal{P}_2^*(S)$ are

$$A_1 = \{\{\text{Wheat}\}, \{\text{Corn}, \text{Soybean}\}\}, \qquad A_2 = \{\{\text{Wheat}, \text{Corn}\}, \{\text{Wheat}, \text{Soybean}\}, \{\text{Wheat}, \text{Corn}, \text{Soybean}\}\}.$$

Agricultural interpretation: elements of $\mathcal{P}_1^*(S)$ are concrete rotation blocks (e.g. {Corn, Soybean} for a two-year rotation); elements of $\mathcal{P}_2^*(S)$ are sets of such blocks (e.g. portfolios of rotations assigned to different fields or planning scenarios compared at the farm scale).

Example 1.9 (Field operations (management bundles); a concrete nonempty iterated power set for |S| = 4). Let

$$S = \{\text{Tillage, Sowing, Irrigation, Fertilization}\}.$$

Then

$$\mathcal{P}_1^*(S) = \{\{\text{Tillage}\}, \{\text{Sowing}\}, \{\text{Irrigation}\}, \{\text{Fertilization}\}, \\ \{\text{Tillage}, \text{Sowing}\}, \{\text{Tillage}, \text{Irrigation}\}, \{\text{Tillage}, \text{Fertilization}\}, \\ \{\text{Sowing}, \text{Irrigation}\}, \{\text{Sowing}, \text{Fertilization}\}, \{\text{Tillage}, \text{Sowing}, \text{Irrigation}\}, \\ \{\text{Tillage}, \text{Irrigation}, \text{Fertilization}\}, \{\text{Sowing}, \text{Irrigation}, \text{Fertilization}\}, \\ \{\text{Tillage}, \text{Sowing}, \text{Irrigation}, \text{Fertilization}\}\}.$$

so
$$|\mathcal{P}_1^*(S)| = 2^4 - 1 = 15$$
 and

$$|\mathcal{P}_2^*(S)| = 2^{15} - 1 = 32767.$$

Two explicit elements of $\mathcal{P}_2^*(S)$ are

$$B_1 = \{\{\text{Tillage}, \text{Sowing}\}, \{\text{Irrigation}\}\},\$$

 $B_2 = \{\{\text{Sowing, Fertilization}\}, \{\text{Irrigation, Fertilization}\}, \{\text{Tillage, Sowing, Irrigation, Fertilization}\}\}.$

Agricultural interpretation: members of $\mathcal{P}_1^*(S)$ are operation bundles applied together (e.g. {Tillage, Sowing} at establishment); members of $\mathcal{P}_2^*(S)$ are sets of bundles (e.g. alternative management templates to be compared across fields, seasons, or irrigation availability scenarios).

1.2 Hypergraphs and SuperHypergraphs

Hypergraphs generalize ordinary graphs by allowing each *hyperedge* to join an arbitrary nonempty subset of vertices, thereby modeling higher-order relations among elements [9, 10, 11]. A *SuperHyperGraph* further extends this idea by incorporating iterated powerset structures, enabling multi-layered, self-referential connections among hyperedges [12, 13, 14, 15].

Definition 1.10 (Hypergraph). [9, 16] Let V be a finite set of vertices. A hypergraph is a pair

$$H = (V, E), \qquad E \subseteq \mathcal{P}(V) \setminus \{\emptyset\},$$

where each element of E is called a *hyperedge*. No restriction is imposed on the size of a hyperedge.

Example 1.11 (Agricultural Hypergraph: crop rotations across fields). Let the vertex set be candidate crops

$$V = \{ \text{Wheat, Corn, Soybean, Canola} \}.$$

Each field's multi-year rotation induces a hyperedge equal to the set of crops appearing in that field's plan:

$$e_{\text{Field 1}} = \{\text{Wheat, Soybean}\},\ e_{\text{Field 2}} = \{\text{Corn, Soybean, Wheat}\},\$$

$$e_{\text{Field }3} = \{\text{Canola}\}.$$

Then H = (V, E) with $E = \{e_{\text{Field 1}}, e_{\text{Field 2}}, e_{\text{Field 3}}\} \subseteq \mathcal{P}(V) \setminus \{\emptyset\}$ is a hypergraph per Definition 1.10. Each hyperedge captures a (possibly multi-year) rotation used on a specific field.

Definition 1.12 (n-SuperHyperGraph). [12] Let V_0 be a finite base set. Define the iterated powersets by

$$\mathcal{P}^0(V_0) = V_0,$$

$$\mathcal{P}^{k+1}(V_0) = \mathcal{P}(\mathcal{P}^k(V_0)), \quad k \ge 0.$$

For a fixed $n \geq 1$, an n-SuperHyperGraph is a pair

$$SHG^{(n)} = (V, E),$$

where

$$V, E \subseteq \mathcal{P}^n(V_0)$$
 and $V \neq \emptyset, E \neq \emptyset$.

Elements of V are called n-supervertices and elements of E are called n-superedges.

Example 1.13 (Corporate Hierarchy as a 2-SuperHyperGraph). Let the set of employees be

$$V_0 = \{A, B, C, D\},\$$

with A = Alice, B = Bob, C = Carol, and D = Dave. First-level subsets (teams) are chosen as

$$T_1 = \{A, B\}, \quad T_2 = \{C, D\},$$

so $T_1, T_2 \in \mathcal{P}(V_0)$. Next, define two departments as elements of the second-level iterated power set:

$$D_1 = \{T_1\}, \quad D_2 = \{T_2\}, \quad \text{so } \{D_1, D_2\} \subseteq \mathcal{P}^2(V_0).$$

Thus we set

$$V_2 = \{ D_1, D_2 \} \subseteq \mathcal{P}^2(V_0), \qquad E_2 = \{ \{ D_1, D_2 \} \} \subseteq \mathcal{P}^2(V_0).$$

The pair

$$F^{(2)} = (V_2, E_2)$$

is a 2-SuperHyperGraph encoding the hierarchy: employees \rightarrow teams \rightarrow departments \rightarrow the company division.

Example 1.14 (Agricultural n=1 SuperHyperGraph: management bundles and protocols). Let the base set collect crops, inputs, and practices

$$V_0 = \{ \text{Wheat, Corn, Urea (N), DAP (P), Drip, Sprinkler, HerbicideA} \}.$$

Fix n = 1. Choose 1-supervertices (nonempty subsets of V_0) that represent reusable management bundles:

$$v_1 = \{\text{Wheat, Urea (N)}\}, \quad v_2 = \{\text{Corn, DAP (P)}\}, \quad v_3 = \{\text{Drip}\}, \quad v_4 = \{\text{HerbicideA, Sprinkler}\}.$$

Set $V = \{v_1, v_2, v_3, v_4\} \subseteq \mathcal{P}^1(V_0)$. Define superedges (each a nonempty subset of V) to encode whole-field protocols:

 $e_1 = \{v_1, v_3\}$ (Wheat + N with drip irrigation), $e_2 = \{v_2, v_4\}$ (Corn + P with herbicide under sprinkler).

Then $\mathrm{SHG}^{(1)}=(V,E)$ with $E=\{e_1,e_2\}\subseteq\mathcal{P}(V)\setminus\{\varnothing\}$ is an n=1 SuperHyperGraph per Definition 1.12. Here, supervertices are management bundles (collections of base actions/resources), and superedges bundle those bundles into implementable protocols.

1.3 Food Web

A food web is a directed graph representing species as nodes and predator–prey interactions as directed edges in an ecosystem[17, 18, 19, 20, 21].

Definition 1.15 (Food Web). [17, 18] Let V be a finite set whose elements represent biological species (or trophic groups) in an ecosystem. A food web is the directed graph

$$G = (V, E),$$

where the edge set $E \subseteq V \times V$ satisfies

$$(u,v) \in E \iff \text{species } u \text{ preys upon species } v.$$

We require additionally that

- There are no self-loops: $(v, v) \notin E$ for all $v \in V$.
- There are no parallel edges: E is a set (not a multiset).

Thus G encodes all direct predator–prey relationships among the species in the ecosystem.

Example 1.16 (Simple Pond Food Web). Consider a small pond ecosystem with five trophic levels:

$$V = \{ A, Z, S, B, D \},\$$

where

- A = Algae
- Z = Zooplankton
- S = Small Fish
- B = Big Fish
- D = Duck

The predator-prey relationships are captured by

$$E = \{ (Z, A), (S, Z), (B, S), (D, B), (D, S) \},\$$

meaning:

$Z \to A$	(zooplankton eats algae),
$S \to Z$	(small fish eat zooplankton),
$B \to S$	(big fish eat small fish),
$D \to B$	(duck eats big fish),
$D \to S$	(duck also eats small fish).

Thus the directed graph G = (V, E) illustrates a simple pond food web.

2 Main Results

In this section, we formally define the concepts of the Food HyperWeb and the Food SuperHyperWeb, and briefly examine their structural properties.

2.1 Food HyperWeb

Food HyperWeb is a hypergraph whose vertices represent species and whose hyperedges correspond to each predator's unique complete prey set.

Definition 2.1 (Base Food Web). Let V_0 be a finite set of species and let

$$G = (V_0, E_0)$$

be the directed graph (the Food Web) where $(u, v) \in E_0$ if and only if species u preys upon species v.

Definition 2.2 (Food HyperWeb). Let $G = (V_0, E_0)$ be a Food Web. Define the Food HyperWeb

$$H = (V_1, E_1)$$

by

$$V_1 = V_0,$$
 $E_1 = \{ e_u \subseteq V_0 : e_u = \{ v \in V_0 : (u, v) \in E_0 \}, e_u \neq \emptyset \}.$

Each hyperedge e_u collects all prey of predator u.

Example 2.3 (Simple Pond Food HyperWeb). Consider the same small pond ecosystem as in the Food Web example:

$$V_0 = \{ A, Z, S, B, D \},\$$

where

$$E_0 = \{(Z, A), (S, Z), (B, S), (D, B), (D, S)\},\$$

with species labels:

- A: Algae
- \bullet Z: Zooplankton
- S: Small Fish
- B: Big Fish
- D: Duck

The Food HyperWeb $H = (V_1, E_1)$ is obtained by grouping each predator's prey into a hyperedge:

$$V_1 = V_0, \qquad E_1 = \{e_Z, e_S, e_B, e_D\},\$$

where

 $e_Z = \{A\},$ (zooplankton eats algae);

 $e_S = \{Z\},$ (small fish eat zooplankton);

 $e_B = \{S\},$ (big fish eat small fish);

 $e_D = \{B, S\},$ (duck eats big fish and small fish).

Thus H is the hypergraph whose vertices are the five species and whose hyperedges capture each predator's full prey set.

Example 2.4 (Marine Food HyperWeb). Consider a simple marine ecosystem with six species:

$$V_0 = \{ P, Z, K, F, S, H \},\$$

where

- P: Phytoplankton
- Z: Zooplankton
- *K*: Krill
- F: Small Fish
- \bullet S: Seal
- H: Shark

The predator-prey relations (the Food Web $G = (V_0, E_0)$) are

$$E_0 = \{ (Z, P), (K, Z), (F, K), (F, Z), (S, F), (S, K), (H, S), (H, F) \}.$$

From this we form the Food HyperWeb $H = (V_1, E_1)$ with $V_1 = V_0$ and

$$E_1 = \{e_Z, e_K, e_F, e_S, e_H\},\$$

where each hyperedge collects all prey of a given predator:

 $e_Z = \{P\},$ (zooplankton eats phytoplankton);

 $e_K = \{Z\},$ (krill eats zooplankton);

 $e_F = \{ K, Z \},$ (small fish eat krill and zooplankton);

 $e_S = \{ F, K \},$ (seal eats small fish and krill);

 $e_H = \{ S, F \},$ (shark eats seal and small fish).

Thus H is the hypergraph whose vertices are the six marine species and whose hyperedges exactly describe each predator's full prey set.

Theorem 2.5 (Food HyperWeb is a Hypergraph). Let $H = (V_1, E_1)$ be the Food HyperWeb constructed from a Food Web $G = (V_0, E_0)$ as in Definition 2.1. Then

$$E_1 \subseteq \mathcal{P}(V_1) \setminus \{\varnothing\}, \quad V_1 \text{ is finite},$$

so H satisfies the axioms of a finite hypergraph.

Proof: By definition $V_1 = V_0$ is finite. Each hyperedge

$$e_u = \{ v \in V_1 : (u, v) \in E_0 \}$$

is nonempty exactly when u preys on at least one species, hence $e_u \in \mathcal{P}(V_1) \setminus \{\emptyset\}$. Moreover, the assignment $u \mapsto e_u$ is injective, so there are no duplicate hyperedges. Thus H meets the standard definition of a finite hypergraph [10].

Theorem 2.6 (Reconstruction of Food Web by Flattening). The original Food Web $G = (V_0, E_0)$ is recovered from the Food HyperWeb $H = (V_1, E_1)$ via

$$E_0 = \{(u, v) \in V_1 \times V_1 : v \in e_u, \ e_u \in E_1\}.$$

Proof: By construction $e_u = \{v : (u, v) \in E_0\}$. Hence

$$(u,v) \in E_0 \iff v \in e_u,$$

so the directed edges of G coincide exactly with the incidences of vertices in hyperedges of H. Therefore flattening H recovers E_0 .

2.2 Food SuperHyperWeb

Food SuperHyperWeb is an n-superhypergraph whose vertices are iterated species subsets and whose hyperedges encode complete multilevel hierarchical predator—prey relationships.

Definition 2.7 (Food *n*-SuperHyperWeb). Let $G = (V_0, E_0)$ be a finite directed graph (the Food Web), and for each $u \in V_0$ write

$$P(u) = \{ v \in V_0 : (u, v) \in E_0 \}$$

for its prey set. Fix an integer $n \geq 1$, and let $\mathcal{P}^n(V_0)$ denote the n-fold iterated powerset of V_0 . Define

$$V_n = \mathcal{P}^n(V_0), \qquad E_n = \{ e_u^{(n)} : u \in V_0, \ P(u) \neq \varnothing, \ e_u^{(n)} = \mathcal{P}^n(P(u)) \}.$$

Then the pair

$$F^{(n)} = (V_n, E_n)$$

is called the $Food\ n$ -SuperHyperWeb.

Example 2.8 (Forest Ecosystem as a Food 2-SuperHyperWeb). Let the species set be

$$V_0 = \{G, M, O, F\},\$$

where

$$G = Grass$$
, $M = Mouse$, $O = Owl$, $F = Fox$.

The Food Web $G = (V_0, E_0)$ has predator-prey arcs

$$E_0 = \{(M, G), (O, M), (F, O), (F, M)\}.$$

For each $u \in V_0$, its prey set is

$$P(M) = \{G\}, \ P(O) = \{M\}, \ P(F) = \{O, M\}, \ P(G) = \emptyset.$$

Fix n=2. Then

$$V_2 = \mathcal{P}^2(V_0), \qquad E_2 = \{ e_u^{(2)} : u \in \{M, O, F\} \},$$

with

$$\begin{split} e_M^{(2)} &= \mathcal{P}^2 \big(P(M) \big) = \mathcal{P}^2 (\{G\}) = \big\{ \emptyset, \{\emptyset\}, \{\{G\}\}, \{\emptyset, \{G\}\} \big\}, \\ e_O^{(2)} &= \mathcal{P}^2 (\{M\}) = \big\{ \emptyset, \{\emptyset\}, \{\{M\}\}, \{\emptyset, \{M\}\} \big\}, \\ e_D^{(2)} &= \mathcal{P}^2 (\{O, M\}). \end{split}$$

which has $2^{2^2}=16$ elements (all subsets of $\mathcal{P}(\{O,M\})$). Thus

$$F^{(2)} = (V_2, E_2)$$

is the Food 2-SuperHyperWeb encoding the multi-level trophic structure:

species \rightarrow prey sets $\xrightarrow{\mathcal{P}}$ collections of prey-sets.

Example 2.9 (Agricultural Food 2-SuperHyperWeb). Let the set of trophic species be

$$V_0 = \{G, I, C, Co, H\},\$$

where

$$G = {\rm Grass}, \quad I = {\rm Insect}, \quad C = {\rm Chicken}, \quad Co = {\rm Cattle}, \quad H = {\rm Human}.$$

The Food Web $G = (V_0, E_0)$ has predator-prey arcs

$$E_0 = \{(I, G), (C, I), (Co, G), (H, C), (H, Co)\}.$$

Hence each prey set is

$$P(I) = \{G\}, P(C) = \{I\}, P(Co) = \{G\}, P(H) = \{C, Co\}.$$

Fix n=2. Then

$$V_2 = \mathcal{P}^2(V_0), \qquad E_2 = \{ e_u^{(2)} : u \in \{I, C, Co, H\} \},$$

with

$$e_I^{(2)} = \mathcal{P}^2 \big(\{G\} \big) = \big\{ \varnothing, \{\varnothing\}, \{\{G\}\}, \{\varnothing, \{G\}\} \big\},$$

$$\begin{split} e_C^{(2)} &= \mathcal{P}^2\big(\{I\}\big) = \big\{\varnothing, \{\varnothing\}, \{\{I\}\}, \{\varnothing, \{I\}\}\big\}, \\ e_{Co}^{(2)} &= \mathcal{P}^2\big(\{G\}\big) \quad \text{(same as } e_I^{(2)}), \\ e_H^{(2)} &= \mathcal{P}^2\big(\{C, Co\}\big), \end{split}$$

which has $2^{2^2} = 16$ elements, each representing a possible "meal bundle" drawn from the basic prey sets $\{C, Co\}$. Therefore

$$F^{(2)} = (V_2, E_2)$$

is the Food 2-SuperHyperWeb encoding both primary producer consumption and human dietary options in a two-layer superhypergraph structure.

Theorem 2.10. $F^{(n)} = (V_n, E_n)$ is an n-SuperHyperGraph.

Proof: By construction V_n is a finite set and each hyperedge

$$e_u^{(n)} = \mathcal{P}^n(P(u))$$

is a nonempty element of $\mathcal{P}^n(V_0)$. Distinct predators u yield distinct hyperedges, so there are no duplicates. Hence $F^{(n)}$ satisfies the definition of an n-SuperHyperGraph.

Theorem 2.11 (Generalization of Food HyperWeb and Food Web). Define the "full flattening" of a nested set by taking the union of all its elements at every level. Since

$$e_u^{(n)} = \mathcal{P}^n(P(u)),$$

flattening $e_u^{(n)}$ recovers exactly the prey set P(u). Therefore

$$\{P(u): u \in V_0, P(u) \neq \emptyset\} = E_1 \text{ and } \{(u,v): v \in P(u)\} = E_0,$$

showing that $F^{(n)}$ simultaneously generalizes the Food HyperWeb $H = (V_0, E_1)$ and the original Food Web $G = (V_0, E_0)$.

Proof: Immediate from the identity $\bigcup_{X \in e_u^{(n)}} \bigcup \cdots \bigcup X = P(u)$ and the definitions of E_1 and E_0 .

3 Conclusion and Future Works

In this paper, we introduced two novel extensions of classical food webs: the $Food\ HyperWeb$, which encodes each predator's entire prey set as a hyperedge, and the $Food\ n$ -SuperHyperWeb, which embeds multilevel trophic relationships within an n-fold superhypergraph structure.

For future work, we plan to explore practical applications of these models in real ecological and agricultural networks. Additionally, we aim to extend the framework using uncertainty-based approaches such as Fuzzy Sets [22, 23], Intuitionistic Fuzzy Sets [24, 25], HyperFuzzy Sets[26, 27], Bipolar Fuzzy Sets[28, 29], Neutrosophic Sets[30, 31, 32], Hesitant Fuzzy Sets[33, 34], and Plithogenic Sets[35, 36] to better handle ambiguity and incomplete information in ecological systems.

Funding

No external funding or financial support was provided for this study.

Acknowledgments

The authors wish to thank all colleagues and mentors whose feedback and encouragement enriched this work. We are grateful to the community of researchers whose foundational contributions informed our developments. Special appreciation goes to the institutions that offered resources and technical infrastructure throughout this project.

Data Availability

This manuscript presents purely conceptual work without empirical data. Scholars interested in these ideas are invited to undertake experimental or case-study research to substantiate and extend the proposed frameworks.

Ethical Approval

This paper involves no human or animal subjects and thus did not require ethics committee review or approval.

Conflicts of Interest

The authors declare that there are no competing interests concerning the content or publication of this article.

Use of Generative AI and AI-Assisted Tools

I use generative AI and AI-assisted tools for tasks such as English grammar checking, and I do not employ them in any way that violates ethical standards.

Disclaimer

The theoretical models and propositions herein have not yet been subjected to practical validation. Readers should independently verify all citations and be aware that inadvertent inaccuracies may remain. The opinions expressed are those of the authors and do not necessarily represent the views of affiliated organizations.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

- [1] Das, A. K., Das, R., Das, S., Debnath, B. K., Granados, C., Shil, B., & Das, R. (2025). A comprehensive study of neutrosophic superhyper bci-semigroups and their algebraic significance. *Transactions on Fuzzy Sets and Systems*, 8(2), 80-101. https://doi.org/10.71602/tfss.2025.1198050
- [2] Florentin Smarandache. (2024). Superhyperstructure & neutrosophic superhyperstructure. *Neutrosophic Sets and Systems 63*, 1-18. Palatino

Linotypehttps://digitalrepository.unm.edu/nss_journal/vol63/iss1/21/?utm_source=chatgpt.com

- [3] Thomas Jech. (2003). Set theory: The third millennium edition, revised and expanded. https://doi.org/10.1007/3-540-44761-X
- [4] Smarandache, F. (2024). Foundation of superhyperstructure & neutrosophic superhyperstructure. *Neutrosophic sets and systems*, 63(2024), 367-381. https://fs.unm.edu/NSS/SuperHyperStructure.pdf
- [5] Smarandache, F. (2022, May). Extension of hyperalgebra to superhyperalgebra and neutrosophic superhyperalgebra (revisited). In *International conference on computers communications and control* (pp. 427-432). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-16684-6_36
- [6] Khalid, H. E., GÜNGÖR, G. D., & Zainal, M. A. N. (2022). Neutrosophic superhyper bi-topological spaces: Original notions and new insights. *Neutrosophic Sets and Systems*, *51*, 33-45. https://fs.unm.edu/nss8/index.php/111/article/view/2347

- [7] Smarandache, F. (2022). Introduction to superhyperalgebra and neutrosophic superhyperalgebra. Infinite Study. Journal of algebraic hyperstructures and logical algebras, 3(2), 17-24. SuperHyperAlgebra.pdf
- [8] Smarandache, F. (2024). The cardinal of the m-powerset of a set of n elements used in the superhyperstructures and neutrosophic superhyperstructures. Systems assessment and engineering management, 2(2024),19-22. https://doi.org/10.61356/j.saem.2024.2436
- [9] Berge, C. (1984). Hypergraphs: Combinatorics of finite sets (Vol. 45). *Elsevier*. Hypergraphs: Combinatorics of Finite Sets C. Berge Google Boeken
- [10] Bretto, A. (2013). Hypergraph theory. In *An introduction. Mathematical engineering*. Cham: Springer, 1, 209-216. https://doi.org/10.1007/978-3-319-00080-0
- [11] Feng, S., Heath, E., Jefferson, B., Joslyn, C., Kvinge, H., Mitchell, H. D., ... & Purvine, E. (2021). Hypergraph models of biological networks to identify genes critical to pathogenic viral response. *BMC bioinformatics*, 22(1), 287. https://doi.org/10.1186/s12859-021-04197-2
- [12] Smarandache, F. (2020). Extension of hypergraph to n-superhypergraph and to plithogenic n-superhypergraph, and extension of hyperalgebra to n-ary (classical-/neutro-/anti-) hyperalgebra. *Neutrosophic sets and systems*, *33*, 291-296. https://fs.unm.edu/nss8/index.php/111/article/download/198/155
- [13] Méndez Bravo, J. C., Bolanos Piedrahita, C. J., Méndez Bravo, M. A., & Pilacuan-Bonete, L. M. (2025). Integrating smed and industry 4.0 to optimize processes with plithogenic n-superhypergraphs. *Neutrosophic sets and systems*, 84(1), 27.
- https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journal%2Fv ol84%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
- [14] Alqahtani, M. (2025). Intuitionistic fuzzy quasi-supergraph integration for social network decision making. *International journal of analysis and applications*, 23, 137-137. https://doi.org/10.28924/2291-8639-23-2025-137
- [15] Nalawade, N. B., Bapat, M. S., Jakkewad, S. G., Dhanorkar, G. A., & Bhosale, D. J. (2025). Structural properties of zero-divisor hypergraph and superhypergraph over Zn: Girth and helly property. *Panamerican mathematical journal*, 35(4S), 485.
- [16] Akram, M., & Shahzadi, G. (2018). Hypergraphs in m-polar fuzzy environment. *Mathematics*, 6(2), 28. https://doi.org/10.3390/math6020028
- [17] Pimm, S., Lawton, J. & Cohen, J. Food web patterns and their consequences. *Nature* 350, 669–674 (1991). https://doi.org/10.1038/350669a0
- [18] Dunne, J. A. (2006). The network structure of food webs. *Ecological networks: linking structure to dynamics in food webs*, 1, 27-86. https://indico.ictp.it/event/a08145/session/28/contribution/17/material/0/1.pdf
- [19] Cohen, J. E., & Stephens, D. W. (2020). Food webs and niche space (Vol. 11). Princeton University Press. Food Webs and Niche Space | Princeton University Press
- [20] Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-web structure and network theory: The role of connectance and size. *Proceedings of the national academy of sciences*, 99(20), 12917-12922. https://doi.org/10.1073pnas.192407699
- [21] Allesina, S., Alonso, D., & Pascual, M. (2008). A general model for food web structure. *Science*, *320*(5876), 658-661. https://doi.org/10.1126/science.1156269
- [22] Lotfi A, Zadeh. Fuzzy sets. (1965). *Information and control, 8*(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

- [23] Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media.
- [24] Atanassov, K.T. (1999). Intuitionistic fuzzy sets. In: *Intuitionistic fuzzy sets. Studies in fuzziness and soft computing*, vol 35. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1870-3_1
- [25] Atanassov, K. T. (2012). On intuitionistic fuzzy sets theory (Vol. 283). Springer. https://doi.org/10.1007/978-3-642-29127-2
- [26] Smarandache, F. (2017). *Hyperuncertain, superuncertain, and superhyperuncertain sets/logics/probabilities/statistics*. Infinite Study. https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1923&context=math_fsp
- [27] Ghosh, J., & Samanta, T. K. (2012). Hyperfuzzy set and hyperfuzzy group. *International journal of advanced science and technology*, 41, 27-38. Hyperfuzzy Set and Hyperfuzzy Group earticle
- [28] Zhang, W. R. (1994, December). Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In NAFIPS/IFIS/NASA'94. Proceedings of the first international joint conference of the north American fuzzy information processing society biannual conference. The industrial fuzzy Control and intellige (pp. 305-309). IEEE. https://doi.org/10.1109/IJCF.1994.375115
- [29] Zhang, W. R. (1998). (Yin) (Yang) bipolar fuzzy sets. In 1998 IEEE international conference on fuzzy systems proceedings. IEEE world congress on computational intelligence (Cat. No. 98CH36228) (Vol. 1, pp. 835-840). IEEE. https://doi.org/10.1109/FUZZY.1998.687599
- [30] Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In *Philosophy* (pp. 1-141). American Research Press. https://web-archive.southampton.ac.uk/cogprints.org/1919/3/eBook-Neutrosophics2.pdf
- [31] Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Single valued neutrosophic graphs. *Journal of new theory*, (10), 86-101. https://dergipark.org.tr/en/pub/jnt/issue/34504/381241
- [32] Al Tahan, M., Al-Kaseasbeh, S., & Davvaz, B. (2024). Neutrosophic quadruple hv-modules and their fundamental module. *Neutrosophic Sets and Systems*, 72, 304-325. https://fs.unm.edu/nss8/index.php/111/article/download/4875/2048
- [33] Torra, V., & Narukawa, Y. (2009, August). On hesitant fuzzy sets and decision. In 2009 IEEE international conference on fuzzy systems (pp. 1378-1382). IEEE. https://doi.org/10.1109/FUZZY.2009.5276884
- [34] Torra, V. (2010). Hesitant fuzzy sets. *International journal of intelligent systems*, 25(6), 529-539. https://doi.org/10.1002/int.20418
- [35] Martin, N. (2022). Plithogenic SWARA-TOPSIS decision making on food processing methods with different normalization techniques. Advances in decision making. https://doi.org/10.5772/intechopen.100548
- [36] Sathya, P., Martin, N., & Smarandache, F. (2024). *Plithogenic forest hypersoft sets in plithogenic contradiction based multi-criteria decision making*. Neutrosophic sets and systems, 73, 669-693. https://fs.unm.edu/nss8/index.php/111/article/download/5118/2143