Conceptual Construction of a Water Resource Recovery and Purification System Based on an Artificial Intelligence Management Model

Authors

  • Hung-Li Chang College of Management, National Taipei University of Technology, Taiwan‎.
  • Ching-Jui Keng College of Management, National Taipei University of Technology, Taiwan‎.
  • Yu-Lun Liu Kent Business School, University of Kent, United Kingdom‎.
  • Han-Ling Jiang College of Management, National Taipei University of Technology, Taiwan‎.

DOI:

https://doi.org/10.22105/444vr378

Keywords:

Wastewater treatment systems, Artificial intelligence, Smart water treatment system

Abstract

Given the trends of energy shortages, sustainability demands, and increased awareness, along with operational challenges in water utilities, there are new opportunities for the future of water treatment. Unfortunately, current wastewater treatment systems and technologies lack integration and a comprehensive management model. This conceptual paper proposes planning and implementing a wastewater treatment system designed to enhance efficiency and reduce operating costs. It emphasizes proactive measures to ensure stable operation and aims to achieve intelligent management of wastewater treatment, guiding the industry towards more efficient and environmentally friendly practices.               

References

‎[1] ‎ Stokes, J. R., & Horvath, A. (2010). Supply-chain environmental effects of wastewater utilities. ‎Environmental research letters, 5(1), 14015. DOI:10.1088/1748-9326/5/1/014015‎

‎[2] ‎ Martínez-Espiñeira, R., & García-Valiñas, M. Á. (2013). Adopting versus adapting: adoption of water-‎saving technology versus water conservation habits in Spain. International journal of water resources ‎development, 29(3), 400–414. DOI:10.1080/07900627.2012.721695‎

‎[3] ‎ Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for ‎wastewater recycling - an overview. RSC advances, 2(16), 6380–6388. DOI:10.1039/c2ra20340e‎

‎[4] ‎ Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., … & Williams, M. D. ‎‎(2021). Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, ‎opportunities, and agenda for research, practice and policy. International journal of information ‎management, 57, 101994. DOI:10.1016/j.ijinfomgt.2019.08.002‎

‎[5] ‎ Zhuang, C., Liu, J., & Zhang, L. (2022). Connotation, architecture and enabling technology of industrial ‎‎5.0. Journal of mechanical engineering, 58(18), 75–87. DOI:10.1088/1748-9326/5/1/014015‎

‎[6] ‎ Wang, J., Zhang, L., Hou, R., & Zhang, C. (2013). Analysis and comparison between digital and smart ‎water conservancy. Geo-informatics in resource management and sustainable ecosystem: international ‎symposium, GRMSE 2013, Wuhan, China, November 8-10, 2013, Proceedings, Part II 1 (pp. 424–434). ‎Springer. https://doi.org/10.1007/978-3-642-41908-9_44‎

‎[7] ‎ Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., Von Gunten, U., & Wehrli, B. (2010). Global water ‎pollution and human health. Annual review of environment and resources, 35(1), 109–136. ‎DOI:10.1146/annurev-environ-100809-125342‎

‎[8] ‎ Chen, J., Chen, S., Fu, R., Li, D., Jiang, H., Wang, C., … & Hicks, B. J. (2022). Remote sensing big data ‎for water environment monitoring: current status, challenges, and future prospects. Earth's future, ‎‎10(2), e2021EF002289. DOI:10.1029/2021EF002289‎

‎[9] ‎ Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an ‎unregulated approach. Current opinion in environmental science and health, 2, 32–45. ‎DOI:10.1016/j.coesh.2018.01.005‎

‎[10] ‎ Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The circular economy-a new ‎sustainability paradigm? Journal of cleaner production, 143, 757–768. DOI:10.1016/j.jclepro.2016.12.048‎

‎[11] ‎ Morseletto, P., Mooren, C. E., & Munaretto, S. (2022). Circular economy of water: definition, strategies ‎and challenges. Circular economy and sustainability, 2(4), 1463–1477. DOI:10.1007/s43615-022-00165-x

‎[12] ‎ Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: challenges, ‎opportunities, and a research agenda. International journal of information management, 53, 102104. ‎DOI:10.1016/j.ijinfomgt.2020.102104‎

‎[13] ‎ Zhang, S., Jin, Y., Chen, W., Wang, J., Wang, Y., & Ren, H. (2023). Artificial intelligence in wastewater ‎treatment: a data-driven analysis of status and trends. Chemosphere, 336, 139163. ‎DOI:10.1016/j.chemosphere.2023.139163‎

‎[14] ‎ Borja, Á., Franco, J., Valencia, V., Bald, J., Muxika, I., Belzunce, M. J., & Solaun, O. (2004). ‎Implementation of the European water framework directive from the Basque country (northern ‎Spain): a methodological approach. Marine pollution bulletin, 48(3–4), 209–218. ‎DOI:10.1016/j.marpolbul.2003.12.001‎

‎[15] ‎ Hernández-Chover, V., Castellet-Viciano, L., Fuentes, R., & Hernández-Sancho, F. (2023). Circular ‎economy and efficiency to ensure the sustainability in the wastewater treatment plants. Journal of ‎cleaner production, 384, 135563. DOI:10.1016/j.jclepro.2022.135563‎

‎[16] ‎ Bahramian, M., Dereli, R. K., Zhao, W., Giberti, M., & Casey, E. (2023). Data to intelligence: the role of ‎data-driven models in wastewater treatment. Expert systems with applications, 217, 119453. ‎DOI:10.1016/j.eswa.2022.119453‎

‎[17] ‎ Babaei, A. A., Tahmasebi Birgani, Y., Baboli, Z., Maleki, H., & Ahmadi Angali, K. (2023). Using water ‎quality parameters to prediction of the ion-based trihalomethane by an artificial neural network ‎model. Environmental monitoring and assessment, 195(8), 917. DOI:10.1007/s10661-023-11503-3‎

‎[18] ‎ Sinharoy, A., Mahanty, B., Behera, S. K., Mehta, M., Mantri, S., Das, R., … & Pakshirajan, K. (2024). ‎Modelling selenite and chemical oxygen demand removal in an inverse fluidized bed bioreactor ‎using genetic algorithm optimized artificial neural network. Journal of chemical technology and ‎biotechnology, 99(1), 247–258. DOI:10.1002/jctb.7532‎

‎[19] ‎ Sadek, A. H., Fahmy, O. M., Nasr, M., & Mostafa, M. K. (2023). Predicting Cu(II) adsorption from ‎aqueous solutions onto nano zero-valent aluminum (nZVAl) by machine learning and artificial ‎intelligence techniques. Sustainability, 15(3), 2081. DOI:10.3390/su15032081‎

‎[20] ‎ Adibimanesh, B., Polesek-Karczewska, S., Bagherzadeh, F., Szczuko, P., & Shafighfard, T. (2023). ‎Energy consumption optimization in wastewater treatment plants: machine learning for monitoring ‎incineration of sewage sludge. Sustainable energy technologies and assessments, 56, 103040. ‎DOI:10.1016/j.seta.2023.103040‎

‎[21] ‎ Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., … & Ren, H. (2020). Comparative analysis of ‎surface water quality prediction performance and identification of key water parameters using ‎different machine learning models based on big data. Water research, 171, 115454. ‎DOI:10.1016/j.watres.2019.115454‎

‎[22] ‎ Xu, B., Pooi, C. K., Tan, K. M., Huang, S., Shi, X., & Ng, H. Y. (2023). A novel long short-term memory ‎artificial neural network (LSTM)-based soft-sensor to monitor and forecast wastewater treatment ‎performance. Journal of water process engineering, 54, 104041. DOI:10.1016/j.jwpe.2023.104041‎

‎[23] ‎ Yang, S. S., Yu, X. L., Ding, M. Q., He, L., Cao, G. L., Zhao, L., … & Ren, N. Q. (2021). Simulating a ‎combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low ‎C/N ratios using artificial neural network. Water research, 189, 116576. DOI:10.1016/j.watres.2020.116576‎

‎[24] ‎ Škrjanc, I. (2009). Confidence interval of fuzzy models: an example using a wastewater treatment ‎plant. Chemometrics and intelligent laboratory systems, 96(2), 182–187. DOI:10.1016/j.chemolab.2009.01.009‎

‎[25] ‎ Obiuto, N. C., Olu-lawal, K. A., Ani, E. C., Ugwuanyi, E. D., & Ninduwezuor-Ehiobu, N. (2024). ‎Chemical engineering and the circular water economy: simulations for sustainable water ‎management in environmental systems. World journal of advanced research and reviews, 21(3), 1–9.‎

‎[26] ‎ Salari, M., Alahabadi, A., Rahmani-Sani, A., Miri, M., Yazdani-Aval, M., Lotfi, H., … & ‎Darvishmotevalli, M. (2024). A comparative study of response surface methodology and artificial ‎neural network based algorithm genetic for modeling and optimization of EP/US/GAC oxidation ‎process in dexamethasone degradation: application for real wastewater, electrical energy consump. ‎Chemosphere, 349, 140832. https://doi.org/10.1016/j.chemosphere.2023.140832‎

‎[27] ‎ Sauvé, S., Lamontagne, S., Dupras, J., & Stahel, W. (2021). Circular economy of water: tackling ‎quantity, quality and footprint of water. Environmental development, 39, 100651. ‎DOI:10.1016/j.envdev.2021.100651‎

‎[28] ‎ Mihai, F. C., Minea, I., & Ulman, S. R. (2023). Water resources preservation through circular economy: ‎the case of Romania. In Water management and circular economy (pp. 143–176). Elsevier. DOI: ‎‎10.1016/B978-0-323-95280-4.00002-3‎

‎[29] ‎ Zarei, M. (2020). Wastewater resources management for energy recovery from circular economy ‎perspective. Water-energy nexus, 3, 170–185. DOI:10.1016/j.wen.2020.11.001‎

‎[30] ‎ Fernandes, E., & Cunha Marques, R. (2023). Review of water reuse from a circular economy ‎perspective. Water, 15(5), 848. DOI:10.3390/w15050848‎

‎[31] ‎ Dziedzic, M., Gomes, P. R., Angilella, M., Asli, A. El, Berger, P., Charmier, A. J., … & Tsukada, S. (2022). ‎International circular economy strategies and their impacts on agricultural water use. Cleaner ‎engineering and technology, 8, 100504. DOI:10.1016/j.clet.2022.100504‎

Published

2024-09-06

How to Cite

Conceptual Construction of a Water Resource Recovery and Purification System Based on an Artificial Intelligence Management Model. (2024). Management Analytics and Social Insights, 1(2), 212-222. https://doi.org/10.22105/444vr378