Prioritizing Sustainable City Factors: A Generative AI-Driven Fermatean Fuzzy Prioritization Framework
Abstract
Sustainable cities are vital for addressing global environmental and social challenges, yet evaluating their diverse sustainability aspects remains complex. Traditional Multi-Criteria Decision-Making (MCDM) methods often suffer from subjectivity, resource intensity, and cognitive burden due to reliance on small expert pools and pairwise comparisons. This study introduces an integrated framework to overcome these limitations by identifying and prioritizing key factors for urban sustainability evaluation. We employ BERTopic, a transformer-based topic modelling technique, to systematically extract 12 relevant factors from the academic literature. Instead of human experts, we leverage a state-of-the-art generative Artificial Intelligence (AI) model (Gemini 2.5 pro) with chain-of-thought reasoning to provide structured evaluations for these factors across different importance clusters. The inherent uncertainty in these AI-generated judgments is modelled using fermatean fuzzy sets. Finally, the factors are prioritized using the soft cluster rectangle method, eliminating the need for pairwise comparisons. Results indicate that pollution control, water management, and social equity are the highest-priority factors, followed by sustainable transportation, urban ecology, population health, and urban resilience. This study presents a more objective, scalable, and efficient data-driven approach to aid policymakers in strategic urban sustainability planning.
Keywords:
Sustainable cities, Multi-criteria decision-making, Fermatean fuzzy, Generative artificial intelligence, Factor prioritizationReferences
- [1] Anastasiadis, P., & Metaxas, G. (2013). Formulating the principles of an eco-city. World transactions on engineering and technology education, 11(4), 394–399. http://www.wiete.com.au/journals/WTE&TE/Pages/Vol.11, No.4 (2013)/07-Metaxas-G.pdf
- [2] Hemström, K., Polk, M., & Smit, W. (2024). Sustainable cities. In the Elgar encyclopedia of interdisciplinarity and transdisciplinarity (pp. 497–500). Edward Elgar Publishing. https://doi.org/10.4337/9781035317967.ch109
- [3] Vara-Horna, A. (2020). Violence against women and sustainable cities. Building sustainable cities: social, economic and environmental factors, 123–134. https://link.springer.com/chapter/10.1007/978-3-030-45533-0_10
- [4] Charbit, Y. (2022). Population and development issues. John Wiley & Sons. https://B2n.ir/hp2182
- [5] Ishiguro, Y. (2006). Sustainable global civilization. Management of natural resources, sustainable development, and ecological hazards, 99, 21. https://B2n.ir/mn4015
- [6] Barnosky, A. D., Ehrlich, P. R., & Hadly, E. A. (2016). Avoiding collapse: Grand challenges for science and society to solve by 2050. Elementa, 4, 94. https://doi.org/10.12952/journal.elementa.000094
- [7] Elmqvist, T., Andersson, E., Frantzeskaki, N., McPhearson, T., Olsson, P., Gaffney, O., Folke, C. (2019). Sustainability and resilience for transformation in the urban century. Nature sustainability, 2(4), 267–273. https://doi.org/10.1038/s41893-019-0250-1
- [8] Eleftheriadou, D., Hartog, E., & Gkiaouri, N. (2021). The city's challenge: Driving a green and digital recovery and social resilience. Computer, 54(5), 70–75. https://doi.org/10.1109/MC.2021.3064439
- [9] Scardovi, C. (2021). Sustainable cities: Big Data, artificial intelligence and the rise of green, “cy-phy” cities. Springer. https://B2n.ir/fs2462
- [10] Chan, J. K. H. (2023). The ethics of wicked problems: An exegesis. Socio-ecological practice research, 5(1), 35–47. https://doi.org/10.1007/s42532-022-00137-3
- [11] Attinger, S. (2011). US cities get serious about sustainability. International journal of innovation science, 3(1), 29–40. https://doi.org/10.1260/1757-2223.3.1.29
- [12] Longo, D., Boeri, A., Gianfrate, V., Palumbo, E., & Boulanger, S. O. M. (2018). Resilient cities: Mitigation measures for urban districts. A feasibility study. International journal of sustainable development and planning, 13(5), 734–745. 10.2495/SDP-V13-N5-734-745
- [13] Pickerill, J., Chitewere, T., Cornea, N., Lockyer, J., Macrorie, R., Blažek, J. M., & Nelson, A. (2024). Urban ecological futures: Five eco-community strategies for more sustainable and equitable cities. International journal of urban and regional research, 48(1), 161–176. https://doi.org/10.1111/1468-2427.13209
- [14] Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. ArXiv Preprint ArXiv:2203.05794. https://doi.org/10.48550/arXiv.2203.05794
- [15] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems (Vol. 35, pp. 24824–24837). Curran Associates, Inc. https://B2n.ir/hp3323
- [16] Senapati, T., & Yager, R. R. (2020). Fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663–674. https://doi.org/10.1007/s12652-019-01377-0
- [17] Zakeri, S., Konstantas, D., Chatterjee, P., & Zavadskas, E. K. (2025). Soft cluster-rectangle method for eliciting criteria weights in multi-criteria decision-making. Scientific reports, 15(1), 284. https://doi.org/10.1038/s41598-024-81027-4
- [18] Azmoodeh, M., Haghighi, F., & Motieyan, H. (2023). Capability index: Applying a fuzzy-based decision-making method to evaluate social inclusion in urban areas using the capability approach. Social indicators research, 165(1), 77–105. https://doi.org/10.1007/s11205-022-03005-5
- [19] Jiang, F., Li, J., Ma, L., Dong, Z., Chen, W., Broyd, T., & Wang, G. (2024). Sustainable urban road planning under the digital twin-MCDM-GIS framework considering multidisciplinary factors. Journal of Cleaner Production, 469, 143097. https://doi.org/10.1016/j.jclepro.2024.143097
- [20] Kshanh, I., & Tanaka, M. (2024). Comparative analysis of MCDM for energy efficiency projects evaluation towards sustainable industrial energy management: Case study of a petrochemical complex. Expert systems with applications, 255, 124692. https://doi.org/10.1016/j.eswa.2024.124692
- [21] Lin, S. H., Zhao, X., Wu, J., Liang, F., Li, J. H., Lai, R. J., Tzeng, G. H. (2021). An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability. Socio-economic planning sciences, 75, 100909. https://doi.org/10.1016/j.seps.2020.100909
- [22] Tahmasebi Birgani, Y., & Yazdandoost, F. (2018). An integrated framework to evaluate resilient-sustainable urban drainage management plans using a combined-adaptive MCDM technique. Water resources management, 32, 2817–2835. https://doi.org/10.1007/s11269-018-1960-2
- [23] Saaty, T. L. (1980). The analytic hierarchy process (AHP). McGraw-Hill, New York. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1943982
- [24] Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- [25] Hwang, C. L., Yoon, K., Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making: Methods and applications, a state-of-the-art survey (pp. 58–191). Springer. https://doi.org/10.1007/978-3-642-48318-9_3
- [26] Han, D., Kalantari, M., & Rajabifard, A. (2023). Identifying and prioritizing sustainability indicators for assessing demolition waste management in China using a modified Delphi-analytic hierarchy process method. Waste management & research, 41(11), 1649–1660. https://doi.org/10.1177/0734242X231166309
- [27] Jamali, A., Robati, M., Nikoomaram, H., Farsad, F., & Aghamohammadi, H. (2023). Urban resilience assessment using a hybrid MCDM model based on DEMATEL-ANP method (DANP). Journal of the indian society of remote sensing, 51(4), 893–915. https://doi.org/10.1007/s12524-023-01670-8
- [28] Maguire, D. J. (1991). An overview and definition of GIS. Geographical information systems: Principles and applications, 1(1), 9–20. https://B2n.ir/uk2636
- [29] Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of the DEMATEL battelle institute. Geneva Research Centre. https://www.scirp.org/reference/referencespapers?referenceid=1847240
- [30] Saaty, T. L., Vargas, L. G., Saaty, T. L., & Vargas, L. G. (2013). The analytic network process. In Book decision making with the analytic network process (pp.1-26). Springer. http://dx.doi.org/10.1007/0-387-33987-6_1
- [31] Choudhury, S., Saha, A. K., Bhowmik, D., & Simic, V. (2024). A Pythagorean fuzzy Einstein weighted averaging operator-based MCDM model for the selection of sustainable urban drainage systems. Environment, development and sustainability, 1–31. https://doi.org/10.1007/s10668-024-05496-3
- [32] Yager, R. R. (2013). Pythagorean membership grades in multicriteria decision making. IEEE transactions on fuzzy systems, 22(4), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989
- [33] Kutty, A. A., Kucukvar, M., Onat, N. C., Ayvaz, B., & Abdella, G. M. (2023). Measuring sustainability, resilience, and livability performance of European smart cities: A novel fuzzy expert-based multi-criteria decision support model. Cities, 137, 104293. https://doi.org/10.1016/j.cities.2023.104293
- [34] Kutlu Gündoğdu, F., & Kahraman, C. (2020). Spherical fuzzy Analytic Hierarchy Process (AHP) and its application to industrial robot selection. In Intelligent and fuzzy techniques in big data analytics and decision making: Proceedings of the INFUS 2019 conference, Istanbul, Turkey, July 23-25, 2019 (pp. 988-996). Springer International Publishing. https://doi.org/10.1007/978-3-030-23756-1_117
- [35] Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.3233/INF-2015-1070
- [36] Seker, S. (2022). IoT-based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment. Technology in society, 71, 102100. https://doi.org/10.1016/j.techsoc.2022.102100
- [37] Wang, J., Gao, H., Wei, G., & Wei, Y. (2019). Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry, 11(1), 56. https://doi.org/10.3390/sym11010056
- [38] Seker, S., Aydin, N., & Tuzkaya, U. R. (2024). What is Needed to design sustainable and resilient cities: Neutrosophic fuzzy-based DEMATEL for designing cities. International journal of disaster risk reduction, 108, 104569. https://doi.org/10.1016/j.ijdrr.2024.104569
- [39] Das, S., Roy, B. K., Kar, M. B., Kar, S., & Pamučar, D. (2020). Neutrosophic fuzzy set and its application in decision making. Journal of ambient intelligence and humanized computing, 11, 5017–5029. https://webvpn.york.ac.uk/10.1007/,DanaInfo=doi.org,SSL+s12652-020-01808-3
- [40] Krishankumar, R., Mishra, A. R., Rani, P., Ecer, F., & Ravichandran, K. S. (2023). Assessment of zero-carbon measures for sustainable transportation in smart cities: A CRITIC-MARCOS framework based on Q-rung fuzzy preferences. IEEE internet of things journal, 10(21), 18651–18662. https://doi.org/10.1109/JIOT.2023.3293513
- [41] Yager, R. R. (2016). Generalized orthopair fuzzy sets. IEEE transactions on fuzzy systems, 25(5), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005
- [42] Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & operations research, 22(7), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H
- [43] Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to Compromise Solution (MARCOS). Computers & industrial engineering, 140, 106231. https://doi.org/10.1016/j.cie.2019.106231
- [44] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: Human language technologies, volume 1 (Long and short papers) (pp. 4171-4186). https://aclanthology.org/N19-1423.pdf
- [45] Campello, R. J. G. B., Moulavi, D., Zimek, A., & Sander, J. (2015). Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM transactions on knowledge discovery from data (TKDD), 10(1), 1–51. https://doi.org/10.1145/2733381
- [46] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine learning research, 3, 993–1022. https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
- [47] Kousis, A., & Tjortjis, C. (2023). Investigating the key aspects of a smart city through topic modeling and thematic analysis. Future internet, 16(1), 3. https://doi.org/10.3390/fi16010003
- [48] Das, P., Mandal, S., Nedungadi, P., & Raman, R. (2025). Unveiling sustainable tourism themes with machine learning based topic modeling. Discover sustainability, 6(1), 280. https://link.springer.com/content/pdf/10.1007/s43621-025-01065-4.pdf
- [49] Raman, R., Pattnaik, D., Lathabai, H. H., Kumar, C., Govindan, K., & Nedungadi, P. (2024). Green and sustainable AI research: An integrated thematic and topic modeling analysis. Journal of Big Data, 11(1), 1–28. https://link.springer.com/content/pdf/10.1186/s40537-024-00920-x.pdf
- [50] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
- [51] Hackl, V., Müller, A. E., Granitzer, M., & Sailer, M. (2023, December). Is GPT-4 a reliable rater? Evaluating consistency in GPT-4's text ratings. In Frontiers in education (Vol. 8, p. 1272229). Frontiers Media SA. https://doi.org/10.3389/feduc.2023.1272229
- [52] Jia, J., Yuan, Z., Pan, J., McNamara, P. E., & Chen, D. (2024). Decision-making behavior evaluation framework for llms under an uncertain context. Advances in neural information processing systems (Vol. 37, pp. 113360–113382). Curran Associates, Inc. https://B2n.ir/qk9689
- [53] Wang, X., & Wu, X. (2024). Can ChatGPT serve as a multi-criteria decision maker? A novel approach to supplier evaluation. ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 10281–10285). IEEE. https://doi.org/10.1109/ICASSP48485.2024.10447204
- [54] McKinney, W. (2011). pandas: A foundational Python library for data analysis and statistics. Python for high performance and scientific computing, 14(9), 1–9. https://B2n.ir/yn7850
- [55] Song, K., Tan, X., Qin, T., Lu, J., & Liu, T. Y. (2020). MPNet: Masked and permuted pre-training for language understanding. Advances in neural information processing systems (Vol. 33, pp. 16857–16867). Curran Associates, Inc. https://B2n.ir/hw6197ml
- [56] Sperandeo, S. (2025). homer6 / all-mpnet-base-v2. https://github.com/homer6/all-mpnet-base-v2
- [57] Robertson, S., Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and beyond. Foundations and trends in information retrieval, 3(4), 333–389. http://dx.doi.org/10.1561/1500000019
- [58] Bozorg-Haddad, O., Bahrami, M., Gholami, A., Chu, X., & Loáiciga, H. A. (2024). Investigation and classification of water resources management strategies: Possible threats and solutions. Natural hazards, 120(11), 9867–9892. https://doi.org/10.1007/s11069-024-06589-y
- [59] Pandya, A. B., Singh, S., & Sharma, P. (2022). Climate change and its implications for irrigation, drainage, and flood management. In Water security under climate change (pp. 95–110). Springer. https://doi.org/10.1007/978-981-16-5493-0_6
- [60] Karpilow, Q. (2015). Strategies for integrating equity into urban sustainability: Reflections from cleveland. Sustainability: The journal of record, 8(4), 185–191. https://doi.org/10.1089/SUS.2015.29011
- [61] Lima, J. J. (2016). Urban reform and development regulation: The case of Belém, Brazil. In Designing sustainable cities in the developing world (pp. 135–150). Routledge. https://B2n.ir/dn1504
- [62] Nikolov, N. (2024, June). Smart cities as a tool for environmental sustainability: Opportunities and challenges. In Environment. Technologies. Resources. Proceedings of the international scientific and practical conference (Vol. 1, pp. 261-266). https://doi.org/10.17770/etr2024vol1.7948
- [63] E. Mabee, W., Jean Blair, M., T. Carlson, J., & & N.M. DeLoyde, C. (2019). Sustainability. In International encyclopedia of human geography, second edition (pp. 157–163). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10014-9
- [64] Sao, A., & Gupta, J. (2023). Sustainability indicators and ten smart cities review. 2023 IEEE International conference on contemporary computing and communications (INC4) (Vol. 1, pp. 1–6). IEEE. https://doi.org/10.1109/InC457730.2023.10263236
- [65] Webster, C. W. R., & Leleux, C. (2019). Searching for the real sustainable smart city? Information polity, 24(3), 229–244. https://doi.org/10.3233/IP-190132
- [66] Yigitcanlar, T., Kamruzzaman, M., Foth, M., Sabatini-Marques, J., Da Costa, E., & Ioppolo, G. (2019). Can cities become smart without being sustainable? A systematic review of the literature. Sustainable cities and society, 45, 348–365. https://doi.org/10.1016/j.scs.2018.11.033